![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Elements of Continuum Mechanics and Conservation Laws presents a
systematization of different models in mathematical physics, a
study of the structure of conservation laws, thermodynamical
identities, and connection with criteria for well-posedness of the
corresponding mathematical problems.
Features: New chapters on Barrier Options, Lookback Options, Asian Options, Optimal Stopping Theorem, and Stochastic Volatility. Contains over 235 exercises, and 16 problems with complete solutions. Added over 150 graphs and figures, for more than 250 in total, to optimize presentation. 57 R coding examples now integrated into the book for implementation of the methods. Substantially class-tested, so ideal for course use or self-study.
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green's and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory. A Particular focus is on the problem of the existence of Liapunov functions (converse Liapunov theorems) and their regularity, whose interest is especially motivated by applications to automatic control. Many recent results in this area have been collected and presented in a systematic way. Some of them are given in extended, unified versions and with new, simpler proofs. In the 2nd edition of this successful book several new sections were added and old sections have been improved, e.g., about the Zubovs method, Liapunov functions for discontinuous systems and cascaded systems. Many new examples, explanations and figures were added making this book accessible and well readable for engineers as well as mathematicians.
Provides a comprehensive treatment of fluid mechanics from the basic concepts to in-depth application problems. Covers waves, torrential rains, and tsunamis. Offers two distinct chapters on jet flows and turbulent flows. Includes numerous end-of-chapter problems. Features a Solutions Manual and MAPLE worksheets for instructor use.
A lot of economic problems can be formulated as constrained
optimizations and equilibration of their solutions. Various
mathematical theories have been supplying economists with
indispensable machineries for these problems arising in economic
theory. Conversely, mathematicians have been stimulated by various
mathematical difficulties raised by economic theories. The series
is designed to bring together those mathematicians who are
seriously interested in getting new challenging stimuli from
economic theories with those economists who are seeking effective
mathematical tools for their research. The editorial board of this
series comprises the following prominent economists and
mathematicians:
This volume is about "Structure." The search for "structure," always the pursuit of sciences within their specific areas and perspectives, is witnessing these days a dra matic revolution. The coexistence and interaction of so many structures (atoms, hu mans, cosmos and all that there is in between) would be unconceivable according to many experts, if there were not, behind it all, some gen eral organizational principle. s that (at least in some asymptotic way) make possible so many equilibria among species and natural objects, fan tastically tuned to an extremely high degree of precision. The evidence accumulates to an increasingly impressive degree; a concrete example comes from physics, whose constant aim always was and is that of searching for "ultimate laws," out of which everything should follow, from quarks to the cosmos. Our notions and philosophy have un dergone major revolutions, whenever the "unthinkable" has been changed by its wonderful endeavours into "fact." Well, it is just from physics that evidence comes: even if the "ultimate" could be reached, it would not in any way be a terminal point. When "complexity" comes into the game, entirely new notions have to be invented; they all have to do with "structure," though this time in a much wider sense than would have been understood a decade or so ago."
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
This two-volume set containts parts I and II. Each volume is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches - in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.
This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simulator, it constitutes the central focus of the majority of the chapters. This part of the book reports on relevant highlights, including single-user (SU), multi-user (MU) and single-input-single-output (SISO) as well as multiple-input-multiple-output (MIMO) transmissions. Furthermore, it summarizes the optimal pilot pattern for high-speed communications as well as different synchronization issues. One chapter is devoted to experiments that show how the link level simulator can provide input to a testbed. This section also uses measurements to present and validate fundamental results on orthogonal frequency division multiplexing (OFDM) transmissions that are not limited to LTE-A. One chapter exclusively deals with the newest tool, the uplink (UL) link level simulator, and presents cutting-edge results. In turn, Part Two focuses on system-level simulations. From early on, system-level simulations have been in high demand, as people are naturally seeking answers when scenarios with numerous base stations and hundreds of users are investigated. This part not only explains how mathematical abstraction can be employed to speed up simulations by several hundred times without sacrificing precision, but also illustrates new theories on how to abstract large urban heterogeneous networks with indoor small cells. It also reports on advanced applications such as train and car transmissions to demonstrate the tools' capabilities.
Observers and Macroeconomic Systems is concerned with the computational aspects of using a control-theoretic approach to the analysis of dynamic macroeconomic systems. The focus is on using a separate model for the development of the control policies. In particular, it uses the observer-based approach whereby the separate model learns to behave in a similar manner to the economic system through output-injections. The book shows how this approach can be used to learn the forward-looking behaviour of economic actors which is a distinguishing feature of dynamic macroeconomic models. It also shows how it can be used in conjunction with low-order models to undertake policy analysis with a large practical econometric model. This overcomes some of the computational problems arising from using just the large econometric models to compute optimal policy trajectories. The work also develops visual simulation software tools that can be used for policy analysis with dynamic macroeconomic systems.
He's back! The physicist returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within Physics Is are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction. These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, Physics Is ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.
Project management has become a widespread instrument enabling organizations to efficiently master the challenges of steadily shortening product life cycles, global markets and decreasing profit margins. With projects increasing in size and complexity, their planning and control represents one of the most crucial management tasks. This is especially true for scheduling, which is concerned with establishing execution dates for the sub-activities to be performed in order to complete the project. The ability to manage projects where resources must be allocated between concurrent projects or even sub-activities of a single project requires the use of commercial project management software packages. However, the results yielded by the solution procedures included are often rather unsatisfactory. Scheduling of Resource-Constrained Projects develops more efficient procedures, which can easily be integrated into software packages by incorporated programming languages, and thus should be of great interest for practitioners as well as scientists working in the field of project management. The book is divided into two parts. In Part I, the project management process is described and the management tasks to be accomplished during project planning and control are discussed. This allows for identifying the major scheduling problems arising in the planning process, among which the resource-constrained project scheduling problem is the most important. Part II deals with efficient computer-based procedures for the resource-constrained project scheduling problem and its generalized version. Since both problems are NP-hard, the development of such procedures which yield satisfactory solutions in a reasonable amount of computation time is very challenging, and a number of new and very promising approaches are introduced. This includes heuristic procedures based on priority rules and tabu search as well as lower bound methods and branch and bound procedures which can be applied for computing optimal solutions.
This is the second volume in a series of innovative proceedings entirely devoted to the connections between mathematics and computer science. Here mathematics and computer science are directly confronted and joined to tackle intricate problems in computer science with deep and innovative mathematical approaches. The book serves as an outstanding tool and a main information source for a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. It provides an overview of the current questions in computer science and the related modern and powerful mathematical methods. The range of applications is very wide and reaches beyond computer science.
The breadth of information about operations research and the overwhelming size of previous sources on the subject make it a difficult topic for non-specialists to grasp. Fortunately, Introduction to the Mathematics of Operations Research with Mathematica??, Second Edition delivers a concise analysis that benefits professionals in operations research and related fields in statistics, management, applied mathematics, and finance. The second edition retains the character of the earlier version, while incorporating developments in the sphere of operations research, technology, and mathematics pedagogy. Covering the topics crucial to applied mathematics, it examines graph theory, linear programming, stochastic processes, and dynamic programming. This self-contained text includes an accompanying electronic version and a package of useful commands. The electronic version is in the form of Mathematica notebooks, enabling you to devise, edit, and execute/reexecute commands, increasing your level of comprehension and problem-solving. Mathematica sharpens the impact of this book by allowing you to conveniently carry out graph algorithms, experiment with large powers of adjacency matrices in order to check the path counting theorem and Markov chains, construct feasible regions of linear programming problems, and use the "dictionary" method to solve these problems. You can also create simulators for Markov chains, Poisson processes, and Brownian motions in Mathematica, increasing your understanding of the defining conditions of these processes. Among many other benefits, Mathematica also promotes recursive solutions for problems related to first passage times and absorption probabilities.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Kinematics and Uniformly Accelerated Motion focuses on the difference between asking, 'How does an object move?' and 'Why does an object move?'. This distinction requires a paradigm shift in the mind of the reader. Therefore, the reader must train themselves to clarify, 'Am I trying to describe how the object moves or why the object moves?'.
In this thesis, the author describes the development of a software framework to systematically construct a particular class of weakly coupled free fermionic heterotic string models, dubbed gauge models. In their purest form, these models are maximally supersymmetric (N = 4), and thus only contain superpartners in their matter sector. This feature makes their systematic construction particularly efficient, and they are thus useful in their simplicity. The thesis first provides a brisk introduction to heterotic strings and the spin-structure construction of free fermionic models. Three systematic surveys are then presented, and it is conjectured that these surveys are exhaustive modulo redundancies. Finally, the author presents a collection of metaheuristic algorithms for searching the landscape for models with a user-specified spectrum of phenomenological properties, e.g. gauge group and number of spacetime supersymmetries. Such algorithms provide the groundwork for extended generic free fermionic surveys.
Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis and related fields. Specific topics covered include: * non-parametric estimation of lifetimes of subjects exposed to radiation * statistical analysis of simultaneous degradation-mortality data with covariates of the aged * estimation of maintenance efficiency in semiparametric imperfect repair models * cancer prognosis using survival forests * short-term health problems related to air pollution: analysis using semiparametric generalized additive models * parametric models in accelerated life testing and fuzzy data * semiparametric models in the studies of aging and longevity This book will be of use as a reference text for general statisticians, theoreticians, graduate students, reliability engineers, health researchers, and biostatisticians working in applied probability and statistics.
This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy-Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.
This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Topics and Features: * This second edition heavily reworks the chapters on Extensions of Multiresolution Analysis and Newlands's Harmonic Wavelets and introduces a new chapter containing new applications of wavelet transforms * Uses knowledge of Fourier transforms, some elementary ideas of Hilbert spaces, and orthonormal systems to develop the theory and applications of wavelet analysis * Offers detailed and clear explanations of every concept and method, accompanied by carefully selected worked examples, with special emphasis given to those topics in which students typically experience difficulty * Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises for additional help Mathematicians, physicists, computer engineers, and electrical and mechanical engineers will find Wavelet Transforms and Their Applications an exceptionally complete and accessible text and reference. It is also suitable as a self-study or reference guide for practitioners and professionals.
This book is the only recent title to present polyhedral results and exact solution methods for location problems encountered in telecommunications, but which also have applications in other areas, such as transportation and supply chain management.
Voting paradoxes are unpleasant surprises encountered in voting. Typically they suggest that something is wrong with the way in dividual opinions are being expressed or processed in voting. The outcomes are bizarre, unfair or otherwise implausible, given the expressed opinions of voters. Voting paradoxes have an important role in the history of social choice theory. The founding fathers of the theory, Marquis de Condorcet and Jean-Charles de Borda, were keenly aware of some of them. Indeed, much of the work of these and other forerunners of the modern social choice theory dealt with ways of avoiding paradoxes related to voting. One of the early paradoxes, viz. that bearing the name of Condorcet, has subsequently gained such a prominent place in the literature that it is sometimes called the paradox of voting. One of the aims of the present work is to show that Condorcet's is but one of many paradoxes of voting. Some of these are pretty closely interrelated making it meaningful to classify them. This is the second main aim of this book. The third objective is to suggest ways of dealing with paradoxes. Since voting is and has always been an essential instrument of democratic rule, it is of some in terest to find out how voting paradoxes are being dealt with by past and present methods of voting. Of even greater interest is to find ways of minimizing the probability of occurrence of various paradoxes. By their very nature some paradoxes are unavoidable."
This book summarizes developments related to a class of methods called Stochastic Decomposition (SD) algorithms, which represent an important shift in the design of optimization algorithms. Unlike traditional deterministic algorithms, SD combines sampling approaches from the statistical literature with traditional mathematical programming constructs (e.g. decomposition, cutting planes etc.). This marriage of two highly computationally oriented disciplines leads to a line of work that is most definitely driven by computational considerations. Furthermore, the use of sampled data in SD makes it extremely flexible in its ability to accommodate various representations of uncertainty, including situations in which outcomes/scenarios can only be generated by an algorithm/simulation. The authors report computational results with some of the largest stochastic programs arising in applications. These results (mathematical as well as computational) are the tip of the iceberg'. Further research will uncover extensions of SD to a wider class of problems. Audience: Researchers in mathematical optimization, including those working in telecommunications, electric power generation, transportation planning, airlines and production systems. Also suitable as a text for an advanced course in stochastic optimization. |
You may like...
Spinors, Twistors, Clifford Algebras and…
Andrzej Borowiec, Bernard Jancewicz, …
Hardcover
R5,389
Discovery Miles 53 890
High Performance Computing in Science…
Wolfgang E. Nagel, Dietmar H. Kroener, …
Hardcover
R5,236
Discovery Miles 52 360
Infinite Dimensional Lie Groups In…
Augustin Banyaga, Joshua A. Leslie, …
Hardcover
R2,528
Discovery Miles 25 280
Optimum-Path Forest - Theory…
Alexandre Xavier Falcao, Joao Paulo Papa
Paperback
R3,037
Discovery Miles 30 370
Machine Learning Applications - Emerging…
Rik Das, Siddhartha Bhattacharyya, …
Hardcover
R3,528
Discovery Miles 35 280
|