![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
The Dynamics program and handbook allows the reader to explore nonlinear dynamics and chaos by the use of illustrated graphics. It is suitable for research and educational needs. This new edition allows the program = to run 3 times faster on the processes that are time consuming. Other major changes include: 1. There will be an add-your-own equation facility. This means it = will be unnecessary to have a compiler. PD and Lyanpunov exponents and Newton method for finding periodic orbits can all be carried out numerically without adding specific code for partial derivatives. 2. The program will support color postscript. 3. New menu system in which the user is prompted by options when a command is chosen. This means that the program is much easier to learn and to remember in comparison to current version. 4. Mouse support is added. 5. The program will be able to use the expanded memory available on modern PC's. This means pictures will be higher resolution. There are also many minor chan ce much of the source code will be available on the web, although some of ges such as zoom facility and help facility.=20 6. Due to limited spa it willr emain on the disk so that the unix users still have to purchase the book. This will allow minor upgrades for Unix users.
V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990?s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman's characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac's famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: ..". a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics." (American Mathematical Society, 1993) "Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations." (CHOICE, 1993) ..". his talent in choosing the most significant results and ordering them within the book can't be denied. The reading of the book is, really, a pleasure." (Dutch Mathematical Society, 1993) "
Discover the relevance of mathematics in your own life as you master important concepts and skills in Waner/Costenoble’s APPLIED CALCULUS, 8th Edition. Updated, numerous examples and applications use real data from well-known businesses, current economic and life events -- from cryptocurrency to COVID -- to demonstrate how the principles you are learning impact you. Readable, streamlined content clearly presents concepts while numerous learning features and tools help you review and practice. Spreadsheet and TI graphing calculator instructions appear where needed. In addition, WebAssign online tools and an interactive eTextbook include teaching videos by an award-winning instructor. You can refine your skills in the necessary math prerequisites with additional examples and powerful adaptive practice sessions. A helpful website from the authors also offers online tutorials and videos on every topic to support your learning, no matter what your learning style.
Density functional theory (DFT) has become the standard
workhorse for quantum mechanical simulations as it offers a good
compromise between accuracy and computational cost.
Kiyosi Ito, the founder of stochastic calculus, is one of the few central figures of the twentieth century mathematics who reshaped the mathematical world. Today stochastic calculus is a central research field with applications in several other mathematical disciplines, for example physics, engineering, biology, economics and finance. The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over the world were invited to present the newest developments within the exciting and fast growing field of stochastic analysis. The present volume combines both papers from the invited speakers and contributions by the presenting lecturers. A special feature is the Memoirs that Kiyoshi Ito wrote for this occasion. These are valuable pages for both young and established researchers in the field.
Outliers play an important, though underestimated, role in control engineering. Traditionally they are unseen and neglected. In opposition, industrial practice gives frequent examples of their existence and their mostly negative impacts on the control quality. The origin of outliers is never fully known. Some of them are generated externally to the process (exogenous), like for instance erroneous observations, data corrupted by control systems or the effect of human intervention. Such outliers appear occasionally with some unknow probability shifting real value often to some strange and nonsense value. They are frequently called deviants, anomalies or contaminants. In most cases we are interested in their detection and removal. However, there exists the second kind of outliers. Quite often strange looking data observations are not artificial data occurrences. They may be just representatives of the underlying generation mechanism being inseparable internal part of the process (endogenous outliers). In such a case they are not wrong and should be treated with cautiousness, as they may include important information about the dynamic nature of the process. As such they cannot be neglected nor simply removed. The Outlier should be detected, labelled and suitably treated. These activities cannot be performed without proper analytical tools and modeling approaches. There are dozens of methods proposed by scientists, starting from Gaussian-based statistical scoring up to data mining artificial intelligence tools. The research presented in this book presents novel approach incorporating non-Gaussian statistical tools and fractional calculus approach revealing new data analytics applied to this important and challenging task. The proposed book includes a collection of contributions addressing different yet cohesive subjects, like dynamic modelling, classical control, advanced control, fractional calculus, statistical analytics focused on an ultimate goal: robust and outlier-proof analysis. All studied problems show that outliers play an important role and classical methods, in which outlier are not taken into account, do not give good results. Applications from different engineering areas are considered such as semiconductor process control and monitoring, MIMO peltier temperature control and health monitoring, networked control systems, and etc.
The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov-Arnold-Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert-Arnold problem for the number of zeros of abelian integrals, Arnold's inequality, comparison, and complexification method in real algebraic geometry, Arnold-Kolmogorov solution of Hilbert's 13th problem, Arnold's spectral sequence in singularity theory, Arnold diffusion, The Euler-Poincare-Arnold equations for geodesics on Lie groups, Arnold's stability criterion in hydrodynamics, ABC (Arnold-Beltrami-Childress) ?ows in ?uid dynamics, The Arnold-Korkina dynamo, Arnold's cat map, The Arnold-Liouville theorem in integrable systems, Arnold's continued fractions, Arnold's interpretation of the Maslov index, Arnold's relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan-Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold's books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world.
Drawing examplesfrom mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductorychapter that explores what it means to be nonlinear, the book covers the mathematical conceptssuch as limit cycles, fractals, chaos, bifurcations, and solitons, that will be applied throughout the book. Numerous computer simulations and exercises allow students to explore topics in greater depth using the Maple computer algebra system. The mathematical level of the text assumes prior exposure to ordinary differential equations and familiarity with the wave and diffusion equations.No prior knowledge of Maple is assumed. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world," or for self-study by practicing scientists and engineers."
In 2008, November 23-28, the workshop of "Classical Problems on Planar Polynomial Vector Fields " was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincare for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert's 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincare and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.
This volume is a substantially revised new edition of the earlier book of the same title. Six new chapters (14-19) deal with topics of current interest: multi-component convection diffusion, convection in a compressible fluid, convenction with temperature dependent viscosity and thermal conductivity, penetrative convection, nonlinear stability in ocean circulation models, and numerical solution of eigenvalue problems. The book presents convection studies in a variety of fluid and porous media contexts. It begins at an elementary level and should be accessible to a wide audience of applied mathematicians, physicists, and engineers.
This thesis presents two analyses of semileptonic b sl+l decays using Flavour Changing Neutral Currents (FCNCs) to test for the presence of new physics and lepton flavour universality, and the equality of couplings for different leptons, which on the basis of experimental evidence is assumed to hold in the Standard Model, free from uncertainties as a result of knowledge of the hadronic matrix elements. It also includes the angular analysis of Lambda_b->Lambda mumu decay and the RK* measurement, both of which are first measurements, not yet performed by any other experiment.
Handbook of Alternative Data in Finance, Volume I motivates and challenges the reader to explore and apply Alternative Data in finance. The book provides a robust and in-depth overview of Alternative Data, including its definition, characteristics, difference from conventional data, categories of Alternative Data, Alternative Data providers, and more. The book also offers a rigorous and detailed exploration of process, application and delivery that should be practically useful to researchers and practitioners alike. Features Includes cutting edge applications in machine learning, fintech, and more Suitable for professional quantitative analysts, and as a resource for postgraduates and researchers in financial mathematics Features chapters from many leading researchers and practitioners.
The book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O: ). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue."
This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.
This newly-translated book takes the reader from the basic principles and conservation laws of hydrodynamics to the description of general atmospheric circulation. Among the topics covered are the Kelvin, Ertel and Rossby-Obukhov invariants, quasi-geostrophic equation, thermal wind, singular Helmholtz vortices, derivation of the Navier-Stokes equation, Kolmogorov's flow, hydrodynamic stability, and geophysical boundary layers. Generalizing V. Arnold's approach to hydrodynamics, the author ingeniously brings in an analogy of Coriolis forces acting on fluid with motion of the Euler heavy top and shows how this is used in the analysis of general atmospheric circulation. This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering. "
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
Relational databases hold data, right? They indeed do, but to think of a database as nothing more than a container for data is to miss out on the profound power that underlies relational technology. Use the expressive power of mathematics to precisely specify designs and business rules. Communicate effectively about design using the universal language of mathematics. Develop and write complex SQL statements with confidence. Avoid pitfalls and problems from common relational bugaboos such as null values and duplicate rows. The math that you learn in this book will put you above the level of understanding of most database professionals today. You'll better understand the technology and be able to apply it more effectively. You'll avoid data anomalies like redundancy and inconsistency. Understanding what's in this book will take your mastery of relational technology to heights you may not have thought possible.
An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.
This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite-element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds.
Increasingly, neural networks are used and implemented in a wide range of fields and have become useful tools in probabilistic analysis and prediction theory. This booka "unique in the literaturea "studies the application of neural networks to the analysis of time series of sea data, namely significant wave heights and sea levels. The particular problem examined as a starting point is the reconstruction of missing data, a general problem that appears in many cases of data analysis. Specific topics covered include: * Presentation of general information on the phenomenology of waves and tides, as well as related technical details of various measuring processes used in the study * Description of the model of wind waves (WAM) used to determine the spectral function of waves and predict the behavior of SWH (significant wave heights); a comparison is made of the reconstruction of SWH time series obtained by means of neural network algorithms versus SWH computed by WAM * Principles of artificial neural networks, approximation theory, and extreme-value theory necessary to understand the main applications of the book. * Application of artificial neural networks (ANN) to reconstruct SWH and sea levels (SL) * Comparison of the ANN approach and the approximation operator approach, displaying the advantages of ANN * Examination of extreme-event analysis applied to the time series of sea data in specific locations * Generalizations of ANN to treat analogous problems for other types of phenomena and data This book, a careful blend of theory and applications, is an excellent introduction to the use of ANN, which may encourage readers to try analogous approachesin other important application areas. Researchers, practitioners, and advanced graduate students in neural networks, hydraulic and marine engineering, prediction theory, and data analysis will benefit from the results and novel ideas presented in this useful resource.
The term " nite Fermi systems" usually refers to systems where the fermionic nature of the constituents is of dominating importance but the nite spatial extent also cannot be ignored. Historically the prominent examples were atoms, molecules, and nuclei. These should be seen in contrast to solid-state systems, where an in nite extent is usually a good approximation. Recently, new and different types of nite Fermi systems have become important, most noticeably metallic clusters, quantum dots, fermion traps, and compact stars. The theoretical description of nite Fermi systems has a long tradition and dev- oped over decades from most simple models to highly elaborate methods of ma- body theory. In fact, nite Fermi systems are the most demanding ground for theory as one often does not have any symmetry to simplify classi cation and as a possibly large but always nite particle number requires to take into account all particles. In spite of the practical complexity, most methods rely on simple and basic schemes which can be well understood in simple test cases. We therefore felt it a timely undertaking to offer a comprehensive view of the underlying theoretical ideas and techniques used for the description of such s- tems across physical disciplines. The book demonstrates how theoretical can be successively re ned from the Fermi gas via external potential and mean- eld m- els to various techniques for dealing with residual interactions, while following the universality of such concepts like shells and magic numbers across the application elds.
Andrej V. Cherkaev and Robert V. Kohn In the past twenty years we have witnessed a renaissance of theoretical work on the macroscopic behavior of microscopically heterogeneous mate rials. This activity brings together a number of related themes, including: ( 1) the use of weak convergence as a rigorous yet general language for the discussion of macroscopic behavior; (2) interest in new types of questions, particularly the "G-closure problem," motivated in large part by applications of optimal control theory to structural optimization; (3) the introduction of new methods for bounding effective moduli, including one based on "com pensated compactness"; and (4) the identification of deep links between the analysis of microstructures and the multidimensional calculus of variations. This work has implications for many physical problems involving optimal design, composite materials, and coherent phase transitions. As a result it has received attention and support from numerous scientific communities, including engineering, materials science, and physics as well as mathematics. There is by now an extensive literature in this area. But for various reasons certain fundamental papers were never properly published, circu lating instead as mimeographed notes or preprints. Other work appeared in poorly distributed conference proceedings volumes. Still other work was published in standard books or journals, but written in Russian or French. The net effect is a sort of "gap" in the literature, which has made the subject unnecessarily difficult for newcomers to penetrate." |
![]() ![]() You may like...
Software Engineering for Variability…
Ivan Mistrik, Matthias Galster, …
Hardcover
R3,604
Discovery Miles 36 040
Knowledge-Based Software Engineering
Dorothy E Setliff, Howard Reubenstein
Hardcover
R2,932
Discovery Miles 29 320
Multimedia Tools for Communicating…
Jonathan Borwein, Maria H. Morales, …
Hardcover
R5,622
Discovery Miles 56 220
Testing and Quality Assurance for…
Jerry Gao, H.-S. Jacob Tsao, …
Hardcover
R3,044
Discovery Miles 30 440
Green IT Engineering: Social, Business…
Vyacheslav Kharchenko, Yuriy Kondratenko, …
Hardcover
R4,474
Discovery Miles 44 740
|