![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Mineralogy > General
This book consists of 44 technical papers presented at the Ninth International Geostatistics Congress held in Oslo, Norway in June 2012. The papers have been reviewed by a panel of specialists in Geostatistics. The book is divided into four main sections: Theory; Petroleum; Mining; and Environment, Climate and Hydrology. The first section focuses on new ideas of general interest to many fields of applications. The next sections are more focused on the particular needs of the particular industry or activity. Geostatistics is vital to any industry dependent on natural resources. Methods from geostatistics are used for estimating reserves, quantifying economical risk and planning of future industrial operations. Geostatistics is also an important tool for mapping environmental hazard and integrating climate data.
There is an extremely voluminous literature on radioactive waste and its disposal, much in the form of government-sponsored research reports. To wade through this mountain of literature is indeed a tedious task, and it is safe to speculate that very few, if any, individuals have the time to examine each report that has been issued during the preceding ten years. This book attempts to summarize much of this literature. Further, many workers in the geosciences have not received training in the nuclear sciences, and many nuclear scientists could be better versed in geology. In this book an attempt is made to cover some background material on radioactive wastes and geotoxicity that may not be an integral part of a geologist's training, and background material on geology and geochemistry for the nuclear scientist. The geochemical material is designed for both the geoscientist and the nuclear scientist. There is no specific level for this book. Certainly, it should be useful to advanced undergraduates and graduates studying geology and nuclear science. It does not pretend to cover a tremendous amount of detail in all subjects, yet the references cited provide the necessary source materials for follow-up study. It is my intention that the reader of this book will have a better, broader understanding of the geochemical aspects of radioactive waste disposal than is otherwise available in anyone source.
The high pressures necessary for the stabilisation of eclogites in metabasic rocks andgarnetperidotitesinultrabasic rocks havebeen long recognised and experimentally established. Xenoliths of such rocks brought up in volatile charged alkaline magmas, such as kimberlites, are widely accepted to be mostly ofupper mantle derivation (Chapter 13). Eclogites are predicted to be thermodynamically stable also in the lower crust beneath cratonic regions. However, xenolith suite studies indicate that kinetic and/or compositional factors limit their distribution in the lower continental crust relative to granulite fades assemblages (Chapter 12). Occurrences ofeclogitesand gamet peridotites in exposed crustal metamor phic terrains have been interpreted in the past as exotic tectonic blocks of deeper (largely mantle) origin, because of their apparent difference in metamorphic grade compared with the encompassing rocks. Only in recent years have metamorphic petrologists begun to recognise that such crustal terrains sometimes preserve co-facial (eclogite fades), high pressure mineral parageneses in other spatially associated lithologies such as metapelites and metagranitoids. Placed in a modern, global geotectonic context, it is now apparent not only that eclogites can be expected to be stabilised in oceanic crust subducted at continental plate margins (Chapter 9), but also that eclogite fades mineral parageneses may be stabilised in a wider range ofcontinental crust lithologies, where substantial tectonic thickening has occurred in continental plate collision zones (Chapters 8-10). Recent exciting evidence from the Western Alps(Chapter 10)suggeststhat continental crust may be subducted to depths approaching 100km and iyet exhumed during subsequent orogenic uplift."
This monograph addresses the legal and policy issues relating to the commercial exploitation of natural resources in outer space. It begins by establishing the economic necessity and technical feasibility of space mining today, an estimate of the financial commitments required, followed by a risk analysis of a commercial mining venture in space, identifying the economic and legal risks. This leads to the recognition that the legal risks must be minimised to enable such projects to be financed. This is followed by a discussion of the principles of international space law, particularly dealing with state responsibility and international liability, as well as some of the issues arising from space mining activities. Much detail is devoted to the analysis of the content of the common heritage of mankind doctrine. The monograph then attempts to balance such interests in creating a legal and policy compromise to create a new regulatory regime.
This is a book about the petrology of kimberlites. It is not about upper mantle xenoliths, diamonds, or prospecting for kimberlites. The object of the book is to provide a comprehensive survey and critique of the advances which have been made in kimberlite studies over the last twenty-five years. Kimberlites are rare rock types; however, their relative obscurity is overriden by their economic and petrological importance to a degree which is not shared with the commoner varieties of igneous rocks. Kimberlites are consequently of interest to a diverse group of earth scientists, ranging from isotope g ochemists concerned with the evolution of the mantle, to volcanologists pondering the origins of diatremes, to exploration geologists seeking new occurrences of the diamondiferous varieties. A common factor essential to all of these activities is a thorough understanding of the characteristics of kimberlites. For the petrologist, kimberlites are exciting and challenging objects for study. Their petrographic diversity, complex mineralogy and geochemistry, and unusual style of intrusion provide endless opportunities for stimulating hypothesis and conjecture concerning their origin and evolution. Kimberlites are a part of a wide spectrum of continental intra-cratonic magmatism. Only by understanding all of the parts of this activity in detail may we make progress in our understanding of the whole.
After many years of geographical and bibliographical journeys, William Panczner has completed a project that many of us would have loved to initiate, but did not undertake because of its magnitude and intrinsic complexity. Not since L. Salazar Salinas, who is credited with authoring Bole tin numeros 40 and 41 (lnstituto Geologico de Mexico, 1922, 1923), has an author been able to provide readers with a comprehensive volume containing information that is both authentic and reliable on Mexican mineralogy, mineral species, and localities. This volume is the most complete synthesis about Mexican minerals and their occurrences to date. It is richly illustrated with photographs and drawings, is well documented, and is organized into four sections, making it easy to use and enjoyable to read. The introduction contains an interesting summary of the mining history and the development of mineralogy. It also describes, in a condensed but accurate and stimulating manner, the geography and the mineralogy of the country, dividing it into eleven mineral provinces. The author discusses eight of the more important mining districts in Mexico, which produce fine mineral speci mens. There is also a chronology of historical, geological, and mineralogical events in Mexico. This is followed by a bibliography with over 500 references on the subject.
The Phenomenon of Studio Goldsmithing When the history of art in the 1980s is written, much of it will be etched in gold. This is the time of the contemporary goldsmith, an artist who chooses to work in precious metals rather than oils or marble. The contemporary jeweler-as-artist has only recently become a re cognized force. With rare exceptions, the whole field is little more than thirty years old. But it is only within the past fifteen years that these jewelers have entered the jewelry mainstream. The phenomenon of contemporary goldsmithing embraces an eclectic group of artists, each with a unique vision, each taking a per sonal path to jewelry producing. They have as little relationship to the typical, mass-produced jewelry as a champagne maker has to a bottler of orange soda. They approach a piece of art, not a piece of metal. The work is personal and a perfect expression of the "back to the land" movement that spawned it. Many of these goldsmiths were looking not merely for a way to make a living but for a way to make a life that was worthy of living. Running a business while trying to remain a creative metalsmith at the same time is the ongoing challenge. The jeweler-artists have solved or resolved these often conflicting needs in slightly different ways and in a beautiful variety of techniques and styles. Their meth ods, their growth, and their work are discussed here.
This book contains papers presented at the Engineering Foundation Conference on mineral matter in fuels held on November 2-7, 1997 in Kona, Hawaii. The conference is one of a continuing series that was initiated by the CEGB Mar- wood Engineering Laboratories in 1963. The conference was to be eventually organised by the Engineering Foundation as the need for multi-disciplinary work related to c- trolling ash effects in combustors became apparent. The conference covers both the science and the applications. The papers also present case histories, particularly for current fuel technologies, developments in advanced technologies for power generation and mathematical modelling of these processes. Developments since 1963 have been slow, but steady, due to the complexity of the chemical and physical processes involved. However, the research presented here displays great improvement in our understanding of the mechanisms by which mineral matter will influence fuel use. Steve Benson from EERC presented a review and current status of issues related to ash deposition in coal combustion and gasification. The application of new analytical tools, which have been detailed in the previous conferences, is presented. These include CCSEM, as well as new techniques for char- terising sintering of ash, such as TMA, image analysis, X-ray diffraction crystallography and thermal analysis. The new analytical techniques were extended to encompass widely differing fuels such as biomass. Ole H Larsen from ELSAM Denmark presented a review of these advanced techniques.
The third volume in this series consists of eight chapters. The first three deal with kinetic aspects of compositional variations both within individual phases and across crystal boundaries. Basically, the authors use the kinetic theory and the sparsely available rate data to explain the formation of various types of zoning and the exsolution processes in silicates. Loomis rightly argues that "the kinetic inhibitions to reequilibration that preserve primary igneous crystals and high- grade metamorphic assemblages also affect the crystallization and prograde meta- morphism of these rocks." These "kinetic inhibitions" appear in the form of zoned crystals, reaction rims and disequilibrium assemblages. Their proper recognition and quantitative characterization leads to an understanding of the physico-chem- ical history of the rock. On a similar theme, I examine possible relationships between the exsolution processes in Ca-Fe-Mg pyroxenes and the cation order-disorder on nonequiva- lent crystallographic sites. A multi-technique study of exsolutions in crystals employing electron microscopy and X-ray structural refinements should contrib- ute greatly in understanding the thermal history of the rock. Many geothermometric studies result in discordant temperatures when the estimates are done using serveral coexisting pairs of minerals in a single specimen. Lasaga uses the kinetic rates of diffusion of various chemical species and explains the discordance through his "geospeedometric" approach.
The contributions to this volume provide new experiences in hydrocarbon exploration, especially to basin analysis methods and risk assessment by computer modelling. Covering mainly the North Sea and adjacent areas also examples from Paris basin, off-Southern Italy, Pannonian basin, Bulgaria, Turkey, Russian platform and Baltic Sea are presented. New approaches in risk-weighting are performed by Monte Carlo simulations, by application of expert-system technology but also by taking into account the importance of man-made mechanical effects, resulting from stress-sensitivity measurements from log and core data.
This book is the successor to A practical introduction to optical mineralogy, which was written in the early 1980s, and published by George Allen & Unwin in 1985. Our intention, once again, is to introduce the student of geology to the microscopic examination of minerals, by both transmitted and reflected light. These techniques should be mastered by students early in their careers, and this text has been proposed in the full awareness that it will be used as a laboratory handbook, serving as a quick reference to the properties of minerals. However, care has been taken to present a systematic explanation of the use of the microscope, as well as to include an extended explanation of the theoretical aspects of optical crystallography in transmitted light. The book is therefore intended as a serious text that introduces the study of minerals under the microscope to the intending honours student of geology, as well as providing information for the novice or interested layman.
This book should be of interest to teachers, students and researchers in paleontology, biology, evolutionary biology, zoology and cell biology.
Over the last several decades, the number of people who are actively involved in the hobby or science of mineral collecting has grown at an increasing pace. In response to the growing demand for informa tion which this large and active group has created, a number of books have been published dealing with mineralogy. As a result, the reader now has a choice among mineral locality guides, field handbooks, photo collections, or books dedicated to the systematic description of minerals. However, as interest in mineralogy has grown, as collectors have become increasingly knowledgeable and aware of mineralogy in its many facets, the need for more specialized information has also grown. Nowhere is this need greater than in the subject of the fluorescence of minerals. The number of collectors who now main tain a fluorescent collection is substantial, interest is constantly increasing, and manufacturers have recently responded by the intro duction of new ultraviolet equipment with major improvements in utility and performance. Yet when the collector searches for any information on this subject, little will be found. He or she will seek in vain for the answers to questions which present themselves as in terest in fluorescent minerals grows and matures. Which minerals fluoresce? Where are fluorescent minerals found? What makes a mineral fluoresce? Why does ultraviolet light produce fluorescence? What is an activator, and how does it contribute to fluorescence? On these matters, the available mineralogy books are largely silent.
In August 1990, Project 233 of the International Geological Correlation Program hosted an international conference in G6ttingen/Giessen, Germany. Discussions were focused on the Tectonothermal and Stratigraphic Evolution of the Central European Orogens. The meeting marked the first opportunity for completely open scientific exchange following the recent political reformations in central Europe. This exciting new atmosphere of international cooperation resulted in presentation of a wealth of information which was new to scientists from both sides of former political boundaries. It was apparent that a unique opportunity was available to prepare a systematic overview in a volume dealing with the geology of Central Europe. The present book represents an outgrowth of this conference, but is not merely a compilation of the papers presented in G6ttingen/Giessen. Instead, it represents a coordinated volume designed to present a balanced, comprehensive view of our present understanding of the tectonothermal and stratigraphic evolution of the Central European orogens. We gratefully acknowledge the help of the national funding agencies, who have financed much of the research work summarized in this book, and of the Interna tional Geological Correlation Programme (IGCP, project no. 233) which provided and helped to finance the organisational framework. We are indebted to Springer-Verlag for thorough copy-editing and production of this book, and we sincerely appreciate the efforts of all the reviewers whose com ments have greatly helped to improve the quality of this volume. We also thank the various contributors for their diligence and perseverance in manuscript preparation."
Nonrenewable energy resources, comprising fossil fuels and uranium, are not ran domly distributed within the Earth's crust. They formed in response to a complex array of geologic controls, notably the genesis of the sedimentary rocks that host most commercial energy resources. It is this genetic relationship between economic re sources and environment that forms the basis for this book. Our grouping of petro leum, coal, uranium, and ground water may appear to be incongruous or artificial. But our basic premise is that these ostensibly disparate resources share common genetic attributes and that the sedimentological principles governing their natural distributions and influencing their recovery are fundamentally similar. Our combined careers have focused on these four resources, and our experiences in projects worldwide reveal that certain recurring geologic factors are important in controlling the distribution of com mercial accumulations and subsurface fluid flow. These critical factors include the shape and stability of the receiving basin, the major depositional elements and their internal detail, and the modifications during burial that are brought about in these sediments by pressure, circulating fluids, heating, and chemical reaction. Since the first edition of this book in 1983, there has been a quantum leap in the volume of literature devoted to genetic stratigraphy and refinement of sedimentologi cal principles and a commensurate increase in the application of these concepts to resource exploration and development."
Biomining is the use of microorganisms in the recovery of metals from ores. During bioleaching, metals such as copper, nickel or zinc are oxidized through microbial action from the water-insoluble sulfide to the soluble sulfate forms. Although gold is inert to microbial action, microbes can also be used in gold recovery from certain types of ores because as they oxidize the ore, they open up its structure, thereby allowing a gold-solubilizing agent such as cyanide to penetrate the ore. The book describes several industrial bioleaching and biooxidation processes as well as the underlying theory and biology of the microbes involved.
Sediment-hosted deposits are the main source of zinc and lead. In this volume, the reader will find the most recent developments in research including: - Fluid migration leading to formation of Zn-Pb ores in sedimentary basins. Relationships to orogenic events and to geothermic anomalies - Transport of metals and precipitation mechanisms. The role played by fluid mixing, fluid-rock reaction, organic matter, and thiosulfates - Paleomagnetic dating of ore deposits - The association of Mississippi Valley-type ore deposits to diapiric salt structures - Geochemical investigations applied to exploration for sediment-hosted Zn-Pb deposits - Economic aspects. The broad geographical coverage is an additional aspect which will interest both researchers and explorationists.
In this book metal deposits, in particular those of non-ferrous and precious metals, are classified and analyzed in terms of their plate tectonic settings. This approach allows a meaningful treatment of metal deposits of different types and provides significant insights into both their genesis and formative environments. The updated 2nd edition incorporates the most significant advances in economic geology of the last 5 years. Particular attention is paid to the geological settings and generative models of gold deposits of all kinds.
Research on base metal sulfide deposits is among the oldest and best-documented subjects of economic geologists worldwide, c- sidering that copper was first mined about 3000 years ago on the island of Cyprus. During the past 10 years, after the exciting discovery of active sulfide formation on the modem ocean floor, a considerable flow of new ideas has stimulated and influenced the discussion of o- forming processes for copper-zinc-Iead sulfides in sedimentary and volcanic environments. The development of new genetic concepts consequently led to reinterpretation of some apparently well-est- lished formation models. This Proceedings Volume contains a collection of carefully selected papers on current research on the geology and metallogeny of base metal sulfide deposits presented as oral or poster contri- tions at the DMG (Deutsche Mineralogische Gesellschaft) - GDMB (Gesellschaft Deutscher Metallhiitten- und Bergleute - Fachsektion Lagerstiittenforschung) - SGA (Society of Geology Applied to Mineral Deposits) Joint Meeting on Ore Deposits in Aachen, Federal Republic of Germany, September 16-19, 1985. Base metal sulfide deposits with different ore compositions occur in a wide variety of geological and lithological settings of almost any age. This has been taken into account in organizing this volume along the lines of classical host-rock classification. The first group of contributions focuses on sediment-hosted base metal sulfide deposits including examples of Kupferschiefer and Copperbelt-type, as well as lead-zinc mineralization in car- nate host rocks.
The molecular mechanisms underlying the fact that a crystal can
take a variety of external forms is something we have come to
understand only in the last few decades. This is due to recent
developments in theoretical and experimental investigations of
crystal growth mechanisms.
All existing introductory reviews of mineralogy are written accord ing to the same algorithm, sometimes called the "Dana System of Mineralogy." Even modern advanced handbooks, which are cer tainly necessary, include basic data on minerals and are essentially descriptive. When basic information on the chemistry, structure, optical and physical properties, distinguished features and para genesis of 200-400 minerals is presented, then there is practically no further space available to include new ideas and concepts based on recent mineral studies. A possible solution to this dilemma would be to present a book beginning where introductory textbooks end for those already famil iar with the elementary concepts. Such a volume would be tailored to specialists in all fields of science and industry, interested in the most recent results in mineralogy. This approach may be called Advanced Mineralogy. Here, an attempt has been made to survey the current possibilities and aims in mineral mater investigations, including the main characteristics of all the methods, the most important problems and topics of mineralogy, and related studies. The individual volumes are composed of short, condensed chap ters. Each chapter presents in a complete, albeit condensed, form specific problems, methods, theories, and directions of investigations, and estimates their importance and strategic position in science and industry."
reviewers, and reported by users of the earlier This third edition (or issue) of the Quantitative Data File for ore minerals (QDF) of the Commission on editions. The result is that 510 species and 125 are Mineralogy of the International Mineralogical compositional or structural variants, or varieties, of Association (COM-IMA) is published, with the species, are represented in QDF3. A large number of support of the Natural History Museum, London, by the entries include data collected from the type Chapman & Hall. It has been greatly revised and specimen of a mineral: these include data extracted enlarged and now includes graphs of the reflectance from the published literature. In this respect, QDF3 spectra for all of its entries. These have been differs from earlier editions. included in response to requests from users of the We have also revised and simplified the notes earlier editions. Also included, for those users concerning X-ray data: no longer are the strongest unfamiliar with the application of such spectra to lines in the powder diffraction pattern quoted, nor mineral identification, are introductory notes, are cell dimensions generally given. Instead, it was illustrated with examples of R spectra. decided to refer to data from the original description, The 635 data sets, which are arranged or to data in the PDF of the JCPDS.
Although some handbooks on the microscopic identi In Part I the concept of heavy mineral analysis is fication of heavy mineral grains are available, a introduced and the relative significance of factors comprehensive manual illustrated in colour has not affecting heavy mineral assemblages is discussed. There been published until now. Because the appearance of are brief references to the commonly used laboratory minerals in grain mounts differs considerably from methods and auxiliary techniques. It concludes with those seen in a thin section, a different approach is some examples of the application of heavy mineral necessary for the identification of detrital grains. studies. Coloured photomicrographs, showing their colour Part II contains the descriptions of 61 transparent shades, pleochroism and interference tints, provide heavy mineral species, including those which are an excellent means of assisting recognition. As a commonly authigenic in sediments. Positive identi number of mineral grains have similar optical proper fication of authigenic minerals is important to avoid ties and morphology, it is equally important to confusion and to help recognition of diagenetic describe them verbally in detail, pointing out events. In the mineral descriptions considerable characteristic features and differences. emphasis is placed upon detrital morphology and This book is intended primarily as a manual that diagnostic features. Optical properties and character describes and illustrates the transparent heavy min istics are detailed, together with information on host erals most commonly found in sediments. It is hoped rocks.
The 12thInternational BasementTectonicsConferencewas hostedbythe Schoolof Geologyand Geophysics and theOklahoma Geological Survey inthe SarkeysEnergy Centeronthe campusoftheUniversityofOklahoma, Norman, Oklahoma, U. S. A. , from May 21stthroughMay 26th, 1995. Atotal of52 individualswere in attendance, 9 ofwhichwereattendingfrom 6differentforeign countries. Fourdaysoforal and posterpresentationswere divided intofour technical sessions withthefollowing themes: I)FractureDevelopment, Reactivation, andMineralization, organizedbyM. 1. Bartholomewand S. Marshak; 2)EvolutionoftheBasementofthe North American Plate (with special emphasison its southern margin), organizedby R E. Denisonand E. G. Lidiak; 3)ProbingofBasement: Geophysical and Geochemical Methods,organizedbyR A. Youngand G. R Keller; and 4)ResponseofCoverRocks toBasementDeformation, organized by P. Berendsenand M. P. Carlson. Seventy-five presentationswere made during thecourseofthe meeting, which wasorganizedby Program Chairman M. Charles Gilbertandprofessionally managedbySaraMoody. Precedingthe meeting wasatwo dayfield trip toexaminethe modeand kinematics ofterraneaccretion duringclosureofan oceanbasin, as preserved in thePrecambrian geologyoftheeasternLlano Uplift, Texas, U. S. A. Thefield trip leaders Sharon Mosher, MarkHelper, Don Barker, and Robert Reed providedan excellentand comprehensive guidebook, and shared theirconsiderable expertise in manydiscussions at one spectacularexposures afteranother. All registrants participatedinthe mid-conferencefield tripguidedby R E. Denison, E. G. Lidiak, M. C. Gilbert, and John P. Hogan to examinethePrecambrianand Cambrianbasementterranesexposed in the ArbuckleMountainsupliftin southernOklahoma, U. S. A. Evidencefor apossible continental arc settingfor the southern margin ofthe-1. 4 Ga Granite-Rhyolite Terrane, theopeningofthe Cambrian Southern Oklahoma Aulacogenasevidencedby aspectacularexposureofadiabasedike swarm, and the roleofearliertectonicfabrics in thedevelopmentofyoungerstructureswere someofthe topicsofdiscussion. Thetwo day postconferencefield trip to the WichitaMountains uplift, southwestern Oklahoma, U. S. A. was ledby M. Charles Gilbert, and John P. Hogan. Thistrip highlightedthe Cambrian SouthernOklahoma Aulacogen.
Sedimentology has neither been adequately popularized nor This book begins with a consideration of the complex end commonly taught as an interdisciplinary subject, and many product of processes and materials, the sedimentary environ workers in the areas of modem environment studies have very ment. It then proceeds to discuss the processes and materials limited knowledge of sedimentology. Practical Sedimentol themselves. The emphasis is on geological interpretations of ogy (henceforth PS) is designed to provide an introduction and ancient deposits, but most discussions are also relevant to review of principles and interpretations related to sedimentary modem sediments and can be used to predict environmental processes, environments, and deposits. Its companion volume, changes. A basic knowledge of geological jargon is antici Analytical Sedimentology (henceforth AS), provides "cook pated for users of this book; we try to define most of the more book recipes" for common analytical procedures dealing with esoteric terms in context, but if there are additional incom sediments, and an introduction to the principles and reference prehensible terms, refer to Bates and Jackson's Glossary of sources for procedures that generally would be performed by Geology (AGI, 1987). specialist consultants or commercial laboratories. Specialist sedimentologists will find in them useful reviews, whereas sci ACKNOWLEDGMENTS entists from other disciplines will find in them concepts and procedures that may contribute to an expanded knowledge of Many chapter drafts ofPS were critically reviewed by Dr. M. |
![]() ![]() You may like...
Using Digital Humanities in the…
Claire Battershill, Shawna Ross
Hardcover
R2,372
Discovery Miles 23 720
Behavioral Finance - Psychology…
Richard Deaves, Lucy Ackert
Hardcover
MisLeadership - Prevalence, Causes and…
John Rayment, Jonathan Smith
Hardcover
R4,221
Discovery Miles 42 210
Geometric Group Theory - Proceedings of…
Ruth Charney, Michael Davis, …
Hardcover
R3,339
Discovery Miles 33 390
Developing Sustainable and Health…
Marianna Rakszegi, Maria Papageorgiou, …
Paperback
R4,958
Discovery Miles 49 580
|