![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Mineralogy > General
This book is a collection of papers that are devoted to various aspects of interactions between mineralogy and material sciences. It will include reviews, perspective papers and original research papers on mineral nanostructures, biomineralization, micro- and nanoporous mineral phases as functional materials, physical and optical properties of minerals, etc. Many important materials that dominate modern technological development were known to mineralogists for hundreds of years, though their properties were not fully recognized. Mineralogy, on the other hand, needs new impacts for the further development in the line of modern scientific achievements such as bio- and nanotechnologies as well as by the understanding of a deep role that information plays in the formation of natural structures and definition of natural processes. It is the idea of this series of books to provide an arena for interdisciplinary discussion on minerals as advanced materials.
Few processes are as important for environmental geochemistry as the interplay between the oxidation and reduction of dissolved and solid species. The knowledge of the redox conditions is most important to predict the geochemical behaviour of a great number of components, the mobilities of which are directly or indirectly controlled by redox processes. The understanding of the chemical mechanisms responsible for the establishment of measurable potentials is the major key for the evaluation and sensitive interpretation of data. This book is suitable for advanced undergraduates as well as for all scientists dealing with the measurement and interpretation of redox conditions in the natural environment.
This monograph deals with the part of the field of experimental rock deformation that is dominated by the phenomena of brittle fracture on one scale or another. Thus a distinction has been drawn between the fields of brittle and ductile behaviour in rock, corresponding more or less to a distinction between the phenomena of fracture and flow. The last chapter deals with the transition between the two fields. In this new edition an attempt has been made to take into account new developments of the last two and a half decades. To assist in this project, the original author greatly appre- ates being joined by the second author. The scope of the monograph is limited to the mechanical properties of rock viewed as a material on the laboratory scale. Thus, the topic and approach is of a "materials science" kind rather than of a "structures" kind. We are dealing with only one part of the wider field of rock mechanics, a field which also includes structural or boundary value problems, for example, those of the stability of slopes, the collapse of mine openings, earthquakes, the folding of stratified rock, and the convective motion of the Earth's mantle. One topic thus excluded is the role of jointing, which it is commonly necessary to take into account in applications in engineering and mining, and pr- ably often in geology too. Shock phenomena have also not been covered.
This collection addresses new research and technology for increased efficiency, energy reduction, and waste minimization in mineral processing, extractive metallurgy, and recycling. Professor Patrick R. Taylor and his students have been studying these topics for the past 45 years. Chapters include new directions in:* Mineral Processing * Hydrometallurgy * Pyrometallurgy * Electrometallurgy * Metals and E waste recycling * Waste minimization (including by-product recovery) * Innovations in metallurgical engineering education and curriculum development
Astromineralogy deals with the science of gathering mineralogical information from the astronomical spectroscopy of asteroids, comets and dust in the circumstellar environments in general. It is only recently, however, that this field has received a tremendous boost with the reliable identification of minerals by the Infrared Space Observatory. This book is the first comprehensive and coherent account of this exciting field. Beyond addressing the specialist in the field, the book is intended as a high-level but readable introduction to astromineralogy for both the nonspecialist researcher and the advanced student.
Geochemical methods of prospecting for and evaluation of minerals
are applied widely today at all stages of geological exploration.
However, geochemical methods of prospecting for many classes of
non-metallic minerals have not been elaborated.
This thesis summarizes the metallogenetic mechanism of the Galinge skarn deposit based on integrated knowledge of tectonics, geochemistry, geochronology, petrology, mineralogy, thermodynamics and hydrothermal fluids. It also discusses the multistage growth characteristics of various skarn minerals in which the varying compositions reflect the evolution of the hydrothermal fluid. The multidisciplinary nature of this research sheds new light on reconstructing metallogenetic processes successfully. It outlines the main aspects of skarn zonation based on the dominant contents of the skarn minerals and the wall rock compositions. In addition, it focuses on volatile-rich minerals including tourmaline and hastingsite, highlighting the importance of the volatile component in the skarn deposit. Lastly, it describes the regional tectonic-magmatic evolutionary history to explain the metallogenic principles, which can be used to guide prospecting in the field.
Covering theory and practice, this wide-ranging introductory textbook covers the main optical properties of rock-forming minerals that can be recognized under the polarizing microscope. The authors elucidate the basic elements of microscopy, the theory of light transmission through translucent minerals, and the properties of light reflected from opaque minerals. They discuss properties of the main silicate and non-silicate minerals, both translucent and opaque and how the optical properties may be used to identify a mineral. The book features many diagrams, summary tables, and four pages of color illustrations, making it an ideal textbook as well as an authoritative reference.
This book comprehensively covers many aspects of green mine, including the basic situation of green mines, mine facilities, extraction management, ecological environment, scientific and technological innovation, standardized management, environmental protection inspectors, and special tools in response to the needs of green mine construction, assessment, and management. It is highly informative with valuable techniques and tools providing insights both for scholars and practitioners working in green mine field.
During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to reveal the intimate structure of samples with high accuracy but on much smaller samples than have ever been investigated by X-ray diffraction. As a tribute to these tremendous recent achievements, this NATO Advanced Study Institute was devoted to the novel approaches of electron crystallography for structure determination of nanosized materials.
This classic textbook is an introduction to the systematics and the use of stable isotopes in geosciences. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. Since the publication of the previous edition improvements in multi-collector ICP mass-spectrometry have increased the ability to measure isotope ratios with very high precision for many elements of the periodic table. The amount of published data has increased tremendously in the last years; thus, conclusions based on a limited database are now better constrained. In this new edition, therefore, 47 elements with resolvable natural variations in isotope composition are discussed. This increase of elements, together with advances in the calculation of equilibrium isotope fractionation using ab initio methods, has led to an unbelievable rise of publications, making substantial major revisions and extensions of the last edition necessary. Many new references have been added, which enable quick access to recent literature.
Precious stones, gems and crystals have been valued throughout history not only for their rarity and expense, but for their mystical properties too. Garnet is rumoured to stimulate the heart, while the pearl offers the protection of the goddess Diana – coral, so-called 'witch-stone', is said to guard against the evil eye, and amethyst is said to prevent drunkenness. Gem Magic guides the reader through the uses of and stories surrounding a cornucopia of stones. Introducing the inherent properties of dazzling selection of gems, gemologist Raymond Walters describes how each stone is formed and its key properties, what beliefs have been associated with them through history and around the world, and both their scientific and occult uses. Famous stones, both real and mythical, are lyrically described – from the infamous Koh-i-Noor diamond to unicorn horn and bezoar.
PGE V-Voisey's Bay (Canada) D -Duluth Complex (USA) K-Kambalda (Australia) M-Merensky Reef (Bushveld) N -Noril'sk region (Russia) P-Pechenga(Russia) S-Sudbury (Canada) T-Thompson (Canada) J -Jinchuan (China) L-Lac des lies (Canada) PR-Platreef (Bushveld) Po-Portimo Complex (Finland) R-Raglan (Canada) U-UG-2 chromitite (Bushveld) Z-Great Dyke of Zimbabwe e-Mt Keith (Australia) . a. -Perseverance (Australia) +-Stillwater (USA) 0 0 0 'c9 -~ Ni+Co Cu Relative value of Ni+Co Fig. 1. 1. Relative va1ue of the contributions of Ni+Co, Cu and PGE to the mag- matic su1fide deposits listed in Table 1. 1 sulfide deposits are closely related to bodies of mafic or ultramafic rock, and the most convenient way in which to consider them is in terms of the type of magma responsible for the rocks with which they are associated. Typically the type of magma involved bears a close relationship to the tec- tonic setting within which it was emplaced. The locations of important deposits, both Ni-Cu dominant and PGE dominant, are shown in Fig. 1. 2. Considering first Ni-Cu deposits, these are further divided into six classes (Table 1. 2) on the basis of their associated magma type. Class NC- 1 (Chap. 3) comprises those related to komatiitic magmatism. Currently known deposits fall into two sub-classes, those related to Archean komatiites ( e. g. the deposits of Western Australia, Zimbabwe and the Abitibi belt of Canada) and those related to Proterozoic komatiites (e. g. those ofthe Raglau and Thompson belts which arebothin Canada)l.
This book includes innovative gas-geothermometers and geobarometers, which are urgently needed to estimate the increasingly higher temperatures and pressures present at depth below the Solfatara volcano, owing to its on-going unrest. Therefore, in this book, new gas geoindicators, applicable up to ca. 1000 DegreesC and 3 kbar, have been implemented and applied to Solfatara fluids. The innovations of this book include: methane, having a sluggish behavior, was treated separately from fast-reacting carbon monoxide; deviations from the ideal gas behavior were considered; the effects of reaction kinetics were taken into account. This was possible because a dataset including many geochemical parameters and extending from 1983 to 2020 with a good sampling frequency is available for Solfatara, making it a case history probably unique worldwide. Nevertheless, the gas geoindicators described in this book can be applied to other similar systems. Thus, this book is of interest to many scientists studying gas geochemistry, geothermometry, and geobarometry for volcanic surveillance and the mitigation of the volcanic risk.
This book describes the mineralization process of barite-fluorite deposits in southeastern Sichuan, Yangtze Block, China. Mainly through systematic field geological surveys and detailed indoor research work, the typical barite-fluorite deposits in this area were analyzed using a variety of analysis methods such as single fluid inclusion LA-ICP-MS composition analysis, trace rare earth element analysis, H-O-S-Sr isotope analysis, F element content analysis, and Sm-Nd geochronological analysis. By in-depth analysis of the ore-forming environment, mineralization process and geological characteristics of barite-fluorite deposits, the following were determined: (1) the source of ore-forming fluids of barite-fluorite deposits and (2) the migration, concentration, enrichment, and evolution of ore-forming sources, exploring the formation mechanism of barite-fluorite deposits. Summarizing the mineralization regularity of the deposit in this area of China provides a new insight and basis for the study of similar types of deposits in the world.
The behaviour of many complex materials extends over time- and lengthscales well beyond those that can normally be described using standard molecular dynamics or Monte Carlo simulation techniques. As progress is coming more through refined simulation methods than from increased computer power, this volume is intended as both an introduction and a review of all relevant modern methods that will shape molecular simulation in the forthcoming decade. Written as a set of tutorial reviews, the book will be of use to specialists and nonspecialists alike.
The collection focuses on the advancements of characterization of minerals, metals, and materials and the applications of characterization results on the processing of these materials. Advanced characterization methods, techniques, and new instruments are emphasized. Areas of interest include, but are not limited to: * Novel methods and techniques for characterizing materials across a spectrum of systems and processes. * Characterization of mechanical, thermal, electrical, optical, dielectric, magnetic, physical, and other properties of materials. * Characterization of structural, morphological, and topographical natures of materials at micro- and nano- scales. * Characterization of extraction and processing including process development and analysis. * Advances in instrument developments for microstructure analysis and performance evaluation of materials, such as computer tomography (CT), X-ray and neutron diffraction, electron microscopy (SEM, FIB, TEM), and spectroscopy (EDS, WDS, EBSD) techniques. * 2D and 3D modelling for materials characterization.
Feldspar minerals make up 60% of the crust of the Earth. They are stable in the upper mantle, and are so abundant in the crust that they form the basis of the classification of igneous rocks. At the surface, feldspars weather to form clay minerals which are the most important mineral constituent of soils. The articles in this book review the chemical reactions of feldspars over the whole sweep of pressure and temperature regimes in the outer Earth, and describe the fundamental aspects of crystal structure which underlie their properties. The book covers intracrystalline reactions, such as order-disorder transformations and exsolution, and transfer of stable and radiogenic isotopes, which can be interpreted to provide insights into the thermal history of rocks. It is suitable for final year undergraduates or research workers.
Thermodynamically constrained averaging theory provides a consistent method for upscaling conservation and thermodynamic equations for application in the study of porous medium systems. The method provides dynamic equations for phases, interfaces, and common curves that are closely based on insights from the entropy inequality. All larger scale variables in the equations are explicitly defined in terms of their microscale precursors, facilitating the determination of important parameters and macroscale state equations based on microscale experimental and computational analysis. The method requires that all assumptions that lead to a particular equation form be explicitly indicated, a restriction which is useful in ascertaining the range of applicability of a model as well as potential sources of error and opportunities to improve the analysis.
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
Recently, many fine textbooks in mineralogy have notable early achievements in unravelling the crys- appeared. The great tradition of mineral science tal structures of minerals. I would include Zachari- continued for over 100 years in Dana's systems, as en and Belov as well, two other giants in crystal textbooks, and manuals, replete with discussion on structure analysis. How many contributed in their crystallographic characters, and short statements own way to our science? Ten? Fifty? One hundred? on the mineral species as then known. The more re- It depends on how you weight the count, but I cent superb RamdohrlStrunz Klockmann's Lehr- suspect it is closest to the biggest number just men- tioned. buch der Mineralogie is a mine of rich crystal- chemical information, perhaps the finest contem- The explosive growth in information (Ger. : porary pedagogic book of its kind. Within the past Fach) on crystal structures began about 1950, when three years, a new and ambitious project - the the big computers and automated diffractometers were just emerging. It contributes mightily to our Handbook of Mineralogy by several keen mineralo- gists - receives much assistance from up-to-date science (Ger. : Naturwissenschaft). Unfortunately, computer technology and promises to be a very fine technological knowledge seems to come easily now, series. The little Mineral Reference Manual by Nic- and Fach appears to be outstripping Naturwissen- schaft, a sorry state of affairs.
The goal of this Third Edition is to update long-term data presented in earlier editions and to generate new syntheses and conclusions about the biogeochemistry of the Hubbard Brook Valley based on these longer-term data. There have been many changes, revelations, and exciting new insights generated from the longer data records. For example, the impact of acid rain peaked during the period of the HBES and is now declining. The longer-term data also posed challenges in that very marked changes in fluxes occurred in some components, such as hydrogen ion and sulfate deposition, calcium and nitrate export in stream water and biomass accumulation, during the almost 50 years of record. Thus, presenting "mean" or "average" conditions for many components for such a long period, when change was so prominent, do not make sense. In some cases, pentads or decades of time are compared to show these changes in a more smoothed and rational way for this long period. In some cases, a single period, often during periods of rapid change, such as acidification, is used to illustrate the main point(s). And, for some elements a unique mass balance approach, allowing the calculation of the Net Ecosystem Flux (NEF), is shown on an annual basis throughout the study.
This second volume in the new series produced by the Mineralogical Society is concerned with the study of rocks from the deep continental crust. It is, we hope, timely to summarize recent petrological advances contributing to this field of active interest. Based mainly on review papers read at a conference, the chapters have subsequently been revised and expanded, while the editors have produced an introductory overview as Chapter 1. The conference was the Winter Meeting of the Mineralogical Society on 15 December 1988, at wh ich Prof. R. C. Newton delivered the 20th Hallimond Lecture of the Society (which forms the basis of Ch. 7). The editors are grateful to all who contrib uted to the smooth running of the meeting at Kingston Polytechnic, and in the ensuing preparation of the volume: in particular, we sincerely thank all of the following for their labours as referees: A. J. Baker, L. M. Barron, M. J. Bickle, A. D. Chambers, J. D. Clemens, J. S. Daly, G. T. R. Droop, C. R. L. Friend, E. S. Grew, S. L. Harley, R. S. Harmon, N. B. W. Harris, B. Harte, T. J. B. Holland, N. F. C. Hudson, W. S. MacKenzie, W. Perkins, H. R. Rollinson, J. W. Sheraton, D. J. Waters, R. H. Worden and B. W. D. Yardley. John R."
The CADIC's Geological Resources Program will soon turn 40 years of fruitful development. During this period many projects were carried out and others remain to be implemented. In the course of time three generations of researchers have been formed. Mentioning names would be unfair to those that could be involuntarily omitted. There is still a long way to go. The eagerness for knowledge should not stop. This book is a tribute to all those people who have worked in the different projects of pure and applied science, and educational, and human resources training, granted to this founding program and associated laboratories of the regional center of CONICET in Ushuaia, Tierra del Fuego, Argentina. The twenty papers which constitute this book have a genuine Latin appeal, having been written by 50 authors based in Argentina and Spain. All this contributions are concerned with Fuegian geological resources. Everyone concerned with this work hopes that it will prove a fitting and lasting memorial to Nacho Subias, whose personal contribution to our knowledge of this geology was outstanding. |
![]() ![]() You may like...
Traditions in German-Speaking…
Lisa Hefendehl-Hebeker, Hans Niels Jahnke
Hardcover
R1,554
Discovery Miles 15 540
The Band Director's Guide to Success - A…
Jonathan M. Kraemer, Michelle Kraemer
Hardcover
R3,830
Discovery Miles 38 300
Teaching life skills in the Foundation…
Mariana Naude, Corinne Meier
Paperback
![]() R683 Discovery Miles 6 830
|