![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Mineralogy > General
30% discount for members of The Mineralogical Society of Britain and Ireland This volume addresses the fundamental factors that underlie our understanding of mineral behaviour and crystal chemistry - a timely topic given current advances in research into the complex behaviour of solids and supercomputing.
Switching off the pumps of a mine is one of the last steps in the lifetime of a surface or underground mine. As the water in the open space raises, the water might become contaminated with different pollutants and eventually starts to flow in the open voids. This book addresses the processes related to mine abandonment from a hydrogeological perspective. After an introduction to the relevant hydrogeochemical processes the book gives detailed information about mine closure procedures. Based on in-situ measurements the hydrodynamic processes in a flooded mine are described and some of the mine closure flow models exemplified. As all investigations base on precise data, the book gives some key issues of monitoring and sampling, especially flow monitoring. Then the book shows some new methodologies for conducting tracer tests in flooded mines and gives some hints to passive mine water treatment. At the end 13 well investigated case studies of flooded underground mine and mine water tracer tests are described and interpreted from a hydrodynamic point of view.
This book is the proceedings of the 11th Kongsberg seminar, held at the Norwegian Mining Museum in the city of Kongsberg, about 70 km Southwest of Oslo. The Kongs berg district is known for numerous Permian vein deposits, rich in native silver. Mining activity in the area lasted for more than 300 years, finally ceasing in 1957. The first eight Kongsberg seminars, organized by professor Arne Bj0rlykke, now director of the Norwegian Geological Survey, were focused on ore-forming processes. These seminars have always been a meeting point for people with a variety of geological backgrounds. Since 1995, the Kongsberg seminars have focussed on geological processes, rather than on specific geological systems, and the selection of invited speakers has been strongly influenced by their interest in the dynamics of geological systems. In 1995 and 1996, various aspects of fluid flow and transport in rocks, were emphasized. The first "Kongsberg proceedings" (of the 1995 seminar) published by Chapman and Hall (Jamtveit and Yardley, 1997) contained 17 chapters dealing with a wide range of topics from field based studies of the effects of fluid flow in sedimentary and metamorphic rocks to computer simulations of flow in complex porous and fractured media. In 1997, the focus was changed to growth, and dissolution processes in geological systems."
Essentially, Orientations and Rotations treats the mathematical and computational foundations of texture analysis. It contains an extensive and thorough introduction to parameterizations and geometry of the rotation space. Since the notions of orientations and rotations are of primary importance for science and engineering, the book can be useful for a very broad audience using rotations in other fields.
The book reviews the geological, mineralogical, geochemical and petrological characteristics of indium-bearing ore deposits. Furthermore it develops a general metallogenic concept for indium in identifying the essential enrichment processes and their economic significance. It represents the first comprehensive study on the metallogeny of indium and covers economic aspects including production and use. Careful geological and mineralogical descriptions are given for representative examples of different deposit types with most significant characteristics being summarized at the end of each chapter.
The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.
Dating the Quaternary, which covers approximately the last 2 million years, has experienced considerable progress over the past few decades. On the one hand, this resulted from the necessity to obtain a valid age concept for this period which had seen tremendous environmental changes and the advent of the genus Homo. On the other hand, instrumental improvements, such as the introduction of highly sensitive analytical techniques, gave rise to physical and chemical innovations in the field of dating. This rapid methodological development is still in full progress. The broad spectrum of chronometric methods applicable to young rocks and artifacts also becomes increasingly intricate to the specialist. Hence, it is my goal to present a comprehensive, state-of-the-art sum mary of these methods. This book is essentially designed as an aid for scientists who feel a demand for dating tasks falling into this period, i. e., Quaternary geologists and archaeologists in the broadest sense. Since it has been developed from a course of lectures for students of geological and archaeological sciences, held at the University of Heidelberg, it certainly shall serve as an introduction for students of these disciplines."
The book offers a review of the work of the Polish Research Group on selected topics of environmental magnetism: the application of magnetic methods to study pollution of outdoor and indoor air, street dust, polluted soil, air filters and indoor dust; the use of magnetic properties to study pedogenic processes in soils and soil structure; as well as deposition processes in recent sediments. The authors focus on detailed cases and provide in-depth explanations of the causes of and relations between physical processes. The examples of different studies demonstrate how to apply magnetometry to solve problems in related disciplines, how to better understand the complexity of the magnetic structure of substances and mediums as well as how to trace interactions between the environment and natural and anthropogenic factors.
Contamination of the earth's ecosystems by potentially toxie metalsl metalloids is a global problem. It will likely grow with our planet's increasing populations and their requirements for natural resources (e. g. , water, food, energy, waste-disposal sites) and metals-based goods. The health impacts of pollution from the ingestion of heavy metals/metalloids via respiration, food, and drinking water are most often long-term and manifest themselves in many ways. These include, for example, disminution of mental acuity, loss of motor control, critieal organ dysfunction, cancer, chronie illnesses and con- comitant suffering, incapacitation, and finally death. The incidence and geographie distribution of disease (epidemiology) has been well-documented historieally and in modern times for toxic metals- triggered diseases in humans, animals and vegetation. The role of the environmental geochemist and colleagues in environ- mental sciences is to scientifically evaluate how to manage metalsl metalloids at sources or in-situ so as to alleviate or eliminate their negative health impacts on living populations. This is initiated by identifying sources and by developing models of the physieal, chem- ieal and biologieal controls on mobilization, interaction, deposition and accumulation of potentially toxie metals/metalloids in source systems and earth ecosystems. Prom this knowledge base, environ- mental scientists (e. g. , geologists, chemists, biologists, environmen- tal engineers, physicists/meteorologists) work together to develop Preface VI concepts and technologieal methodologies to preserve global eco- systems. Their concerted efforts are equally focussed on devising strategems to remediate ecosystems still carrying heavy metals/metal- loids pollutant burdens from ancient and modern societies.
This book comprises papers resulting from the 1st International workshop Minerals as Advanced Materials I . It is intended as an exchange of ideas between mineralogists and material scientists. The aim is to identify minerals and mineral objects that have or potentially have unique physical, chemical and structural properties that are of interest from the viewpoint of applied mineralogy and material science. The author studied Crystallography at the St.Petersburg State University.
This book presents the materials of the XIII General Meeting of the Russian Mineralogical Society. Over 190 participants prepared the result of their scientific work on mineralogy: mineral diversity and the evolution of mineral formation (S1); minerals as markers of petro- and ore genesis and new methods of their determination (S2); mineralogy and formation conditions of deposits of strategic minerals (S3); problems of applied (technological and ecological) mineralogy and geochemistry (S4); natural stone in art and architecture (S5); modern research in the field of stone and gemological studies (S6); mineralogical crystallography, crystallochemistry, and new minerals (F1); history of science, museumification, and popularization of natural science knowledge (F2). The Russian Mineralogical Society is the oldest mineralogical Society in Russia (from 1817). The Russian Mineralogical Society joins more than 1200 researchers from universities, academic and industry institutes, and production organizations in Russia's major scientific centers. The Society has 17 sections, including crystallochemistry, radiography and spectroscopy of minerals, ore mineralogy, technological mineralogy, experimental mineralogy, ecological mineralogy and geochemistry, and new mineral nomenclature classification. The main scientific and organizing event for the Russian Mineralogical members is the meeting session, organized every fourth year.
On a Sustainable Future of the Earth s Natural Resources is divided into three sections, with individual chapters contributed by experts on diff erent facets of the earth sciences, natural resources management and related issues. The first section focuses on the status of Earth s resources; land, water, biota and atmosphere. Reviews on the rate of exploitation and the need to conserve these resources for future sustenance are also covered in this section. Th e following section includes chapters elucidating environmental, ecological, climatological and anthropological pressures on sustained nourishment with the Earth s resources. The last section describes management practices, issues and perspectives on sociological, legal, administrative, ICT and strategic efforts that need to be implemented in order to sustain our natural resources. This book covers a broad spectrum of the Earth s resources and sustenance, offering a comprehensive perspective on their past, present and future.
Few processes are as important for environmental geochemistry as the interplay between the oxidation and reduction of dissolved and solid species. The knowledge of the redox conditions is most important to predict the geochemical behaviour of a great number of components, the mobilities of which are directly or indirectly controlled by redox processes. The understanding of the chemical mechanisms responsible for the establishment of measurable potentials is the major key for the evaluation and sensitive interpretation of data. This book is suitable for advanced undergraduates as well as for all scientists dealing with the measurement and interpretation of redox conditions in the natural environment.
This book is a collection of papers that are devoted to various aspects of interactions between mineralogy and material sciences. It will include reviews, perspective papers and original research papers on mineral nanostructures, biomineralization, micro- and nanoporous mineral phases as functional materials, physical and optical properties of minerals, etc. Many important materials that dominate modern technological development were known to mineralogists for hundreds of years, though their properties were not fully recognized. Mineralogy, on the other hand, needs new impacts for the further development in the line of modern scientific achievements such as bio- and nanotechnologies as well as by the understanding of a deep role that information plays in the formation of natural structures and definition of natural processes. It is the idea of this series of books to provide an arena for interdisciplinary discussion on minerals as advanced materials.
This monograph deals with the part of the field of experimental rock deformation that is dominated by the phenomena of brittle fracture on one scale or another. Thus a distinction has been drawn between the fields of brittle and ductile behaviour in rock, corresponding more or less to a distinction between the phenomena of fracture and flow. The last chapter deals with the transition between the two fields. In this new edition an attempt has been made to take into account new developments of the last two and a half decades. To assist in this project, the original author greatly appre- ates being joined by the second author. The scope of the monograph is limited to the mechanical properties of rock viewed as a material on the laboratory scale. Thus, the topic and approach is of a "materials science" kind rather than of a "structures" kind. We are dealing with only one part of the wider field of rock mechanics, a field which also includes structural or boundary value problems, for example, those of the stability of slopes, the collapse of mine openings, earthquakes, the folding of stratified rock, and the convective motion of the Earth's mantle. One topic thus excluded is the role of jointing, which it is commonly necessary to take into account in applications in engineering and mining, and pr- ably often in geology too. Shock phenomena have also not been covered.
Astromineralogy deals with the science of gathering mineralogical information from the astronomical spectroscopy of asteroids, comets and dust in the circumstellar environments in general. It is only recently, however, that this field has received a tremendous boost with the reliable identification of minerals by the Infrared Space Observatory. This book is the first comprehensive and coherent account of this exciting field. Beyond addressing the specialist in the field, the book is intended as a high-level but readable introduction to astromineralogy for both the nonspecialist researcher and the advanced student.
This thesis summarizes the metallogenetic mechanism of the Galinge skarn deposit based on integrated knowledge of tectonics, geochemistry, geochronology, petrology, mineralogy, thermodynamics and hydrothermal fluids. It also discusses the multistage growth characteristics of various skarn minerals in which the varying compositions reflect the evolution of the hydrothermal fluid. The multidisciplinary nature of this research sheds new light on reconstructing metallogenetic processes successfully. It outlines the main aspects of skarn zonation based on the dominant contents of the skarn minerals and the wall rock compositions. In addition, it focuses on volatile-rich minerals including tourmaline and hastingsite, highlighting the importance of the volatile component in the skarn deposit. Lastly, it describes the regional tectonic-magmatic evolutionary history to explain the metallogenic principles, which can be used to guide prospecting in the field.
Geochemical methods of prospecting for and evaluation of minerals
are applied widely today at all stages of geological exploration.
However, geochemical methods of prospecting for many classes of
non-metallic minerals have not been elaborated.
Covering theory and practice, this wide-ranging introductory textbook covers the main optical properties of rock-forming minerals that can be recognized under the polarizing microscope. The authors elucidate the basic elements of microscopy, the theory of light transmission through translucent minerals, and the properties of light reflected from opaque minerals. They discuss properties of the main silicate and non-silicate minerals, both translucent and opaque and how the optical properties may be used to identify a mineral. The book features many diagrams, summary tables, and four pages of color illustrations, making it an ideal textbook as well as an authoritative reference.
During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to reveal the intimate structure of samples with high accuracy but on much smaller samples than have ever been investigated by X-ray diffraction. As a tribute to these tremendous recent achievements, this NATO Advanced Study Institute was devoted to the novel approaches of electron crystallography for structure determination of nanosized materials.
This collection addresses new research and technology for increased efficiency, energy reduction, and waste minimization in mineral processing, extractive metallurgy, and recycling. Professor Patrick R. Taylor and his students have been studying these topics for the past 45 years. Chapters include new directions in:* Mineral Processing * Hydrometallurgy * Pyrometallurgy * Electrometallurgy * Metals and E waste recycling * Waste minimization (including by-product recovery) * Innovations in metallurgical engineering education and curriculum development
PGE V-Voisey's Bay (Canada) D -Duluth Complex (USA) K-Kambalda (Australia) M-Merensky Reef (Bushveld) N -Noril'sk region (Russia) P-Pechenga(Russia) S-Sudbury (Canada) T-Thompson (Canada) J -Jinchuan (China) L-Lac des lies (Canada) PR-Platreef (Bushveld) Po-Portimo Complex (Finland) R-Raglan (Canada) U-UG-2 chromitite (Bushveld) Z-Great Dyke of Zimbabwe e-Mt Keith (Australia) . a. -Perseverance (Australia) +-Stillwater (USA) 0 0 0 'c9 -~ Ni+Co Cu Relative value of Ni+Co Fig. 1. 1. Relative va1ue of the contributions of Ni+Co, Cu and PGE to the mag- matic su1fide deposits listed in Table 1. 1 sulfide deposits are closely related to bodies of mafic or ultramafic rock, and the most convenient way in which to consider them is in terms of the type of magma responsible for the rocks with which they are associated. Typically the type of magma involved bears a close relationship to the tec- tonic setting within which it was emplaced. The locations of important deposits, both Ni-Cu dominant and PGE dominant, are shown in Fig. 1. 2. Considering first Ni-Cu deposits, these are further divided into six classes (Table 1. 2) on the basis of their associated magma type. Class NC- 1 (Chap. 3) comprises those related to komatiitic magmatism. Currently known deposits fall into two sub-classes, those related to Archean komatiites ( e. g. the deposits of Western Australia, Zimbabwe and the Abitibi belt of Canada) and those related to Proterozoic komatiites (e. g. those ofthe Raglau and Thompson belts which arebothin Canada)l.
This classic textbook is an introduction to the systematics and the use of stable isotopes in geosciences. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. Since the publication of the previous edition improvements in multi-collector ICP mass-spectrometry have increased the ability to measure isotope ratios with very high precision for many elements of the periodic table. The amount of published data has increased tremendously in the last years; thus, conclusions based on a limited database are now better constrained. In this new edition, therefore, 47 elements with resolvable natural variations in isotope composition are discussed. This increase of elements, together with advances in the calculation of equilibrium isotope fractionation using ab initio methods, has led to an unbelievable rise of publications, making substantial major revisions and extensions of the last edition necessary. Many new references have been added, which enable quick access to recent literature.
The behaviour of many complex materials extends over time- and lengthscales well beyond those that can normally be described using standard molecular dynamics or Monte Carlo simulation techniques. As progress is coming more through refined simulation methods than from increased computer power, this volume is intended as both an introduction and a review of all relevant modern methods that will shape molecular simulation in the forthcoming decade. Written as a set of tutorial reviews, the book will be of use to specialists and nonspecialists alike.
Feldspar minerals make up 60% of the crust of the Earth. They are stable in the upper mantle, and are so abundant in the crust that they form the basis of the classification of igneous rocks. At the surface, feldspars weather to form clay minerals which are the most important mineral constituent of soils. The articles in this book review the chemical reactions of feldspars over the whole sweep of pressure and temperature regimes in the outer Earth, and describe the fundamental aspects of crystal structure which underlie their properties. The book covers intracrystalline reactions, such as order-disorder transformations and exsolution, and transfer of stable and radiogenic isotopes, which can be interpreted to provide insights into the thermal history of rocks. It is suitable for final year undergraduates or research workers. |
You may like...
Geomatics in Energy and Water Resources
Sm Ramasany, S Thillai Govindarajan
Hardcover
R6,263
Discovery Miles 62 630
Properties and Applications of Diamond
Eileen Wilks, John Wilks
Paperback
R1,240
Discovery Miles 12 400
Zeolites and Zeolite-like Materials
Bert Sels, Leonid Kustov
Hardcover
|