![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > General
Fisheries genetics researchers will find invaluable the thirty-eight peer-reviewed contributions in this book, presented at the 20th Lowell Wakefield Fisheries Symposium "Genetics of Subpolar Fish and Invertebrates," held in May 2002 in Juneau, Alaska. Looming over concerns of lost fisheries stocks and persistent erosion of genetic variability are predictions of global warming, which may further tax genetic resources. One consequence is an increased reliance on genetic applications to many aspects of fisheries management, aquaculture, and conservation. The contributions in this book are important to modern fisheries science and genetics, and illustrate the evolution of the field over the past decade. The improved technology provides tools to address increasingly complicated problems in traditional applications and ecological and behavioral studies. The union between molecular and quantitative genetics, where many of the major questions about population structure and evolution remain unanswered, will also benefit from the new technologies.
The genetic work that has been carried out with volume, and especially in Section V 'Germplasm crop plants indicates that many nutritional charac- resources and creation of genotypes for specific teristics are independently inherited and could be environmental including low input systems', is selected for a breeding program. evident. This can be considered as genuine progress This volume presents the proceedings of the in the direction of an effective use of nutrients by 'Third International Symposium on Genetic plants. Aspects of Plant Mineral Nutrition' held in We look forward to more advances in our un- Braunschweig 1988, and demonstrates the wide derstanding of the mechanisms involved in the acceptance that cultivars respond differently to nutrient efficiency of crop plants and in the nutritional and stress factors. An improved re- development and improvement of screening sponse of cultivars to nutrients and stress con- techniques at the Fourth Symposium to be held in ditions is accessible via screening, selection and Australia in 1991. breeding of the available plant genetic resources and will help to reduce the inputs and to protect the N. EI Bassam environment. M.Dambroth The contribution of the plant breeders in this B. c. Loughman XI N. El Bassam et al. (Eds.), Genetic aspects a/plant mineral nutrition, 1-7. PLSO PN 122 (c) 1990 Kluwer Academic Publishers.
The nitrogen-containing ring structures are at the hub of metabolism and include ATP, nucleic acids, many coenzymes, metabolic regulators and integrators such as adenosine and GTP, signalling compounds such as cyclic nucleotides and plant cytokinins and biochemically functional pigmets of which haemoglobin, the cytochromes and chlorophyll are examples. This important book collates and integrates current knowledge of all the biologically important N-heterocyclic compounds, covering the relationship between their chemical structures and physiological functions within this key group of compounds. Few biochemical reaction sequences do not involve one of these compounds as a substrate, product or coenzyme and a full understanding of the interrelationship between their structure and function is vital for all those woorking in the field of biochemistry. Professor Eric Brown who has a huge wealth of experience in teaching and research on these compounds has written a very comprehensible and thorough book which will be of great value for advanced students and researchers in biochemistry and those at the interfacing subject areas of chemistry, biology and pharmacology including all those employed in researching biological function within pharmaceutical companies.
Glycobiology involves studies of complex carbohydrates and posttrans- tional modifications of proteins, and has become an important interdiscip- nary field encompassing chemistry, biochemistry, biology, physiology, and pathology. Although initial research was directed toward elucidation of the different carbohydrate structures and the enzymes synthesizing them, the field has now moved toward identifying the functions of carbohydrates. The pro- cols described in Glycobiology Protocols form a solid basis for investigations of glycan functions in health and disease. The cloning of many of the genes participating in glycosylation processes has helped to enhance our knowledge of how glycosylation is controlled, but has also added another dimension of complexity to the great heterogeneous variety of the structures of the oligos- charides of glycoproteins, proteoglycans, and glycolipids. A family of similar enzyme proteins exists for each glycosylation step. Glycosyltransferases are extremely specific for both the nucleotide sugar donor and the acceptor s- strate, but many other factors control sugar transfer, including the locali- tion and topology of enzymes, cofactors, possible chaperone proteins, and the availability of sugar acceptor substrates. The analysis of the intracellular organization of glycosylation and of the factors controlling the activities of the participating enzymes in the cell are important areas that need more research efforts. Another challenge for future research is to understand the glycodynamics of a cell, that is, how the cell responds to stimuli leading to biological and pathological changes in terms of alterations in glycosylation, and how this affects the biology of the cell.
Scientists in lipid biochemistry research have increasingly recognized the role of lipids as signaling molecules, aside from their importance in forming cellular membranes and storing energy. This book provides the latest findings on a wide variety of complex lipids in cells that function either as intracellular or intercellular messengers. International investigators present current data on the most extensively studied examples of both intracellular and intercellular messengers generated from lipids, and describe their basic mechanisms, which also utilize receptors in the G-protein-coupled family. The in-depth discussions address such topics as lipid signaling for protein kinase C activation, phosphatidic acid and lyso-phosphatidic acid, ceramide as a messenger, bioactive properties of Sphingosine and structurally related compounds, platelet-activating factor and PAF-like mimetics, and prostaglandins and related compounds. Lipid Second Messengers is an up-to-date reference on developments in the expanding field of lipid-derived signals and will be of interest to biochemists, physiologists, pharmacologists, geneticists, and biologists.
International concern in scientific, industrial, and governmental communi ties over traces of xenobiotics in foods and in both abiotic and biotic en vironments has justified the present triumvirate of specialized publications in this field: comprehensive reviews, rapidly published research papers and progress reports, and archival documentations. These three international publications are integrated and scheduled to provide the coherency essential for nonduplicative and current progress in a field as dynamic and complex as environmental contamination and toxicology. This series is reserved ex clusively for the diversified literature on "toxic" chemicals in our food, our feeds, our homes, recreational and working surroundings, our domestic an imals, our wildlife and ourselves. Tremendous efforts worldwide have been mobilized to evaluate the nature, presence, magnitude, fate, and toxicology of the chemicals loosed upon the earth. Among the sequelae of this broad new emphasis is an undeniable need for an articulated set of authoritative publications, where one can find the latest irr,portant world literature pro duced by these emerging areas of science together with documentation of pertinent ancillary legislation. Research directors and legislative or administrative advisers do not have the time to scan the escalating number of technical publications that may contain articles impbrtant to current responsibility. Rather, these individuals need the background provided by detailed reviews and the assurance that the latest information is made available to them, all with minimal literature searching.
Known for flexibility and robustness, PCR techniques continue to improve through numerous developments, including the identification of thermostable DNA polymerases which exhibit a range of properties to suit given applications. PCR Protocols, Third Edition selects recently developed tools and tricks, contributed by field-leading authors, for the significant value that they add to more generally established methods. Along with the cutting-edge methodologies, this volume describes many core applications, such as PCR cloning and sequencing, expression, copy number or methylation profile analysis, 'DNA fingerprinting', diagnostics, protein engineering, interaction screening as well as a chapter highlighting workflow considerations and contamination control, crucial for all PCR methods. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary reagents and materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, PCR Protocols, Third Edition seeks to further elucidate this essential technique while also providing core principles with broad applications for scientists of all backgrounds.
The purpose of these volumes is to provide a reference work for the methods of purifying many of the receptors we know about. This becomes increasingly important as full-length recep- tors are overexpressed in bacteria or in insect cell systems. A major problem for abundantly expressed proteins will be their purification. In addition to purification protocols, many other de- tails can be found concerning an individual receptor that may not be available in standard texts or monographs. No book of this type is available as a compendium of purification procedures. Receptor Purification provides protocols for the purification of a wide variety of receptors. These include receptors that bind: neurotransmitters, polypeptide hormones, steroid hormones, and ligands for related members of the steroid supergene family and others including receptors involved in bacterial motion. The text of this information is substantial so as to require its publica- tion in two volumes. Consequently, a division was made by grouping receptors depending upon the nature of their ligands. Thus, in volume 1 there are contributions on serotonin receptors, adrenergic receptors, the purification of GTP-binding proteins, opioid receptors, neurotensin receptor, luteinizing hormone re- ceptor, human chorionic gonadotropin receptor, follicle stimulat- ing hormone receptor, thyrotropin receptor, prolactin receptor, epidermal growth factor receptor, platelet derived growth factor receptor, colony stimulating factor receptor, insulinlike growth factor receptors, insulin receptor, fibronectin receptor, interferon receptor, and the cholecystokinin receptor.
Abraham Rosenberg assembles the groundbreaking work of preeminent international scientists to provide the most current, state-of-the-art presentation of research in siabiology. This concise volume examines the historical development of the field and reviews current knowledge on the genetic, immunologic, oncologic, neurodevelopmental, pathogenic, and cell regulatory properties of sialic acid. Outstanding features of this work include exhaustive reference material and detailed information tables.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
This book presents the first thorough economic analysis of current agricultural biotechnology regulation. The contributors, most of whom are agricultural economists working either in universities or NGOs, address issues such as commercial pesticides, the costs of approving new products, liability, benefits, consumer acceptance, regulation and its impacts, transgenic crops, social welfare implications, and biosafety. Richard E. Just is distinguished University Professor and former Chair, Department of Agricultural and Resource Economics, University of Maryland at College Park. Julian M. Alston is Professor, Department of Agricultural and Resource Economics, University of California at Davis. David Zilberman is Chair, Department of Agricultural and Resource Economics, University of California at Berkeley.
At its present rate of growth, atherosclerosis will be the major cause of death from disease by the year 2020. Atherosclerosis is an extremely complex, biochemical, multifactorial process. This book will cover many aspects of atherogenesis, with particular emphasis on lipid and lipoprotein metabolism. We will cover all aspects of the regulation of cholesterol homeostasis and the importance of each pathway. This book will explore the role of nuclear hormone receptors on lipid and lipoprotein metabolism and their complex roles in atherogenesis. Finally, how the use of genetic studies can help sort out the immense complexities that mediate these aspects of atherogenesis will be discussed.
In the past several years, DNA microarray technology has attracted tremendous interest in both the scientific community and in industry. With its ability to simultaneously measure the activity and interactions of thousands of genes, this modern technology promises unprecedented new insights into mechanisms of living systems. Currently, the primary applications of microarrays include gene discovery, disease diagnosis and prognosis, drug discovery (pharmacogenomics), and toxicological research (toxicogenomics). Typical scientific tasks addressed by microarray experiments include the identification of coexpressed genes, discovery of sample or gene groups with similar expression patterns, identification of genes whose expression patterns are highly differentiating with respect to a set of discerned biological entities (e.g., tumor types), and the study of gene activity patterns under various stress conditions (e.g., chemical treatment). More recently, the discovery, modeling, and simulation of regulatory gene networks, and the mapping of expression data to metabolic pathways and chromosome locations have been added to the list of scientific tasks that are being tackled by microarray technology. Each scientific task corresponds to one or more so-called data analysis tasks. Different types of scientific questions require different sets of data analytical techniques. Broadly speaking, there are two classes of elementary data analysis tasks, predictive modeling and pattern-detection. Predictive modeling tasks are concerned with learning a classification or estimation function, whereas pattern-detection methods screen the available data for interesting, previously unknown regularities or relationships.
Plant Stress Mitigators: Types, Techniques and Functions presents a detailed contextual discussion of various stressors on plant health and yield, with accompanying insights into options for limiting impacts using chemical elicitors, bio-stimulants, breeding techniques and agronomical techniques such as seed priming, cold plasma treatment, and nanotechnology, amongst others. The book explores the various action mechanisms for enhancing plant growth and stress tolerance capacity, including nutrient solubilizing and mobilizing, biocontrol activity against plant pathogens, phytohormone production, soil conditioners, and many more unrevealed mechanisms. This book combines research, methods, opinion, perspectives and reviews, dissecting the stress alleviation action of different plant stress mitigators on crops grown under optimal and sub-optimal growing conditions (abiotic and biotic stresses).
At the forefront of life sciences today is the emerging discipline of chembiomolecular science. This new term describes the integration of the frontier fields of chemical biology, chemistry, and pharmacology. Chembiomolecular science aims to elucidate new biological mechanisms as potential drug targets and enhance the creation of new drug therapies. This book comprises the proceedings of the Uehara Memorial Foundation Symposium 2011, which focused on the most recent advances in chembiomolecular science made by leading experts in the field. The book is divided into three main topics. The first is the chemical approach to understanding complex biological systems on a molecular level using chemical compounds as a probe. The second describes the biological approach used to develop new lead drug compounds. The third focuses on the biological system that serves as the potential drug target, the beginning step in the process of developing new drugs. Replete with the latest research, the book will draw the attention of all scientists interested in the synergies between chemistry and biology to elucidate life on a molecular level and to promote drug discovery. Ultimately, the book helps promote the understanding of biological functions at the molecular level and create new pharmaceuticals that can contribute to improving human health.
Neglected and Underutilized Crops: Future Smart Food explores future food crops with climate resilience potential. Sections cover their botany, nutritional significance, global distribution, production technology, and tolerance to biotic and abiotic stresses of neglected and underutilized crops. By simply changing species in a crop rotation system, the cycle of some pests and diseases is disrupted and probabilities of infestations are reduced. Finally, the book provides case studies that highlight where the adaptation of crops to local environments, especially with regard to climate change, have been successful. These crops can help make agricultural production systems more resilient to climate change. Although a few books on neglected and underutilized crops are available, this comprehensive book covers the full scope of crop husbandry, nutritional significance and global distribution.
tRNA and AminoacyltRNA Synthetases: Charging of RNA Microhelices and Decoding Genetic Information; P. Schimmel. rRNA and mRNA: Regulation, Processing, and Assembly: Genetic Approaches to the Study of Eukaryotic Ribosomes; J.R. Warner, et al. Translational Initiation and Termination: Mechanisms of Translational Initiation and Repression in Prokaryotes; D.E. Draper. The Elongation Process: Sites, Factors, Nascent Chain: The Allosteric ThreeSite Model and the Mechanism of Action of Both Elongation Factors EFTu and EFG; K.H. Nierhaus, et al. Accuracy in Translation: Mutants of tRNA, Ribosomes, and mRNA Affecting Frameshifting, Hopping, or Stop Codon Read-Through; J.F. Atkins, et al. Quaternary Structure, Functional Centers, and Domains in the Ribosome. Translation in Cell Organelles. The Translational Apparatus and Evolution. 64 additional articles. Index.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
In this PhD thesis, Yue Yanan addresses a long-overlooked and critical question in the development of non-viral vectors for gene delivery. The author determines that those uncomplexed and cationic polymer chains free in the solution mixture of polymer and DNA facilitate and promote gene transfection. Furthermore, by using a combination of synthetic chemistry, polymer physics and molecular biology, Yue confirms that it is those cationic polymer chains free in the solution mixture, rather than those bound to DNA chains, that play a decisive role in intracellular trafficking. Instead of the previously proposed and widely accepted "proton sponge" model, the author's group propose a new hypothesis based on the results of several well-designed and decisive experiments. These results show that free polycationic chains with a length of more than ~10 nm are able to partially block the fusion between different endocytic vesicles, including the endocytic-vesicle-to-endolysosome pathway. This thesis is highly original and its results greatly deepen our understanding of polymer-mediated gene transfection. More importantly, it provides new insights into the rational design of next-generation superior polymeric gene-delivery vectors.
This Special Issue of Water, Air, and Soil Pollution offers original contributions from BIOGEOMON, The Third International Symposium on Ecosystem Behavior, which was held on the campus ofVillanova University from June 21-25, 1997. Previous meetings were held in Prague in 1987 and again in 1993. The BIOGEOMON series was initiated in 1987 when a group of researchers from the Czech Geological Survey organized a conference called GEOMON, Geochemical Monitoring in Representative Basins. GEOMON was fairly narrowly focused on monitoring of element pools and fluxes on a small watershed scale. As signalled by the change in name to BIOGEOMON, the second conference explicitly recognized that assessment of anthropogenic effects on ecosystem processes requires a combination of geochemical monitoring with other approaches, including watershed-level manipulations, use of radioactive and stable isotopic tracers, and both empirical and process modeling. The 1997 BIOGEOMON conference was the largest, with over 240 participants from 28 countries on five continents in attendance, and broadest in scope. The conference featured a plenary speaker, six keynote speakers, 35 invited speakers, over 60 oral contributed presentations, and over 75 poster presentations.
The period following the second world war has witnessed an expanding commitment to incr~ased food production in tropical countries. Public and private initiatives at the national and international levels have led to the creation of programs geared specifically towards the improvement of food crops in tropical conditions. Examples of this increased commitment are the network of international agricultural research centers and numerous bilateral aid projects. As a consequence, crop improvement has become a truly worldwide endeavor, relying on an international network of institutions and collaborators. This holds also for Phaseolus beans. Following the discovery of the Americas, Phaseolus beans became distributed on all six continents. Yet, until not so long ago, most of the research on Phaseolus improvement took place in developed countries. In recognition of the nutritional importance of Phaseolus beans in developing countries, this has changed considerably in the last years, principally perhaps through the activities of the Centro Internacional de Agricultura Tropical (CIAT) and the International Board for Plant Genetic Resources (IBPGR). Consequently, the scope of the research on Phaseolus has broadened considerably and the number of Phaseolus researchers is larger than ever before.
The Complete Guide to Dance Nutrition is the first complete textbook written by an experienced dietitian specialising in the field of dance nutrition and provideS both dancers-in-training and instructors with practical advice on dance nutrition for health and performance. It is also highly relevant for dance professionals. With an in-depth and extensive coverage on all nutrition topics relevant to dancers, this textbook covers nutrition for the scenarios dancers face, including day to day training and rehearsals, peak performance, injuries, immunonutrition, nutrition and stress management. Information is included on topics applicable to individual dancers including advice for dancers with type 1 diabetes and clinical conditions relating to gut health. This book guides the reader through the macronutrients making up the diet, their chemical structure and their role in health and optimal performance. Readers will be shown how to estimate energy and nutrient needs based on their schedule, type of dance undertaken, and personal goals before considering the practical aspects of dance nutrition; from nutrition planning to dietary supplements, strategies for assessing the need to alter body composition and guidance on undertaking health focused changes is presented. The Complete Guide to Dance Nutrition combines and condenses the author's knowledge and many years of experience working in the dance industry to translate nutrition science into a practical guide. Bringing together the latest research in dance science and nutrition, this book aims to be a trusted reference and practical textbook for students of Dance, Dance Nutrition, Dance Performance, Sport Nutrition and Sport Science more generally as well as for those training in the dance industry, dance teachers and professionals.
|
![]() ![]() You may like...
Nonlinear Control of Fixed-Wing UAVs…
Michail G. Michailidis, Kimon P. Valavanis, …
Hardcover
R2,873
Discovery Miles 28 730
The Mobilities Paradox - A Critical…
Maximiliano E. Korstanje
Hardcover
R2,778
Discovery Miles 27 780
Structure and Regularity of Group…
Sang Hyun Kim, Thomas Koberda
Hardcover
R3,654
Discovery Miles 36 540
The Gift of Who I Am - Living Prayer…
Christine Black Cummings
Paperback
|