![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Fundamentals of Aluminium Metallurgy: Recent Advances updates the very successful book Fundamentals of Aluminium Metallurgy. As the technologies related to casting and forming of aluminum components are rapidly improving, with new technologies generating alternative manufacturing methods that improve competitiveness, this book is a timely resource. Sections provide an overview of recent research breakthroughs, methods and techniques of advanced manufacture, including additive manufacturing and 3D printing, a comprehensive discussion of the status of metalcasting technologies, including sand casting, permanent mold casting, pressure diecastings and investment casting, and recent information on advanced wrought alloy development, including automotive bodysheet materials, amorphous glassy materials, and more. Target readership for the book includes PhD students and academics, the casting industry, and those interested in new industrial opportunities and advanced products.
The Fifth International Symposium on the Characterisation of Porous
Solids (COPS-V) was held at Heidelberg, Germany, from May 30 to
June 2, 1999. About 220 participants from 25 countries enjoyed a
very successful meeting with 32 lectures and 155 poster
presentations.
Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. If you're a research professional, academic, or student, you'll learn: nucleation theory, precipitate growth, calculation of interfacial energies. advanced techniques for technologically relevant multicomponent systems and complex thermo-mechanical treatments. numerical approaches using evolution equations and discrete particle size distributions. the major software products available for precipitation kinetics simulations.
Volume 10 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and materials science. Of all the new superconducting materials investigated having a more than three times highter transition temperature, the cuprates are the most prominent. Although originally intended as novel superconducting compounds, these materials have opened a new field of magnetism that permits detailed studies of the propagation of magnetic order as a function of separation and crystallographic orientation as well as studies of the interplay of strain and magnetic properties. Chapter one presents a detailed account of acheivements in this field. Further chapters report on the progress being made in research areas that have been dealt with in previous volumes of the Handbook. These include the group of soft magnetic materials in which supplementary results dealing with nanocrystalline alloys are highlighted; the magnetic properties of intermetallic compounds in which rare earth elements are combined with nonmagnetic elements; progress in the development in hard magnetic materials, with the emphasis on novel developments in the manufacturing routes and the physical principles on which these new developments are based.
Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants. The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices.
"God made solids, but surfaces were the work of the devil." This statement by Nobel prize winner Wolfgang Paul emphasizes the diabolic nature of surfaces. Since surface properties deviate significantly from the bulk solid state, surface studies can be puzzling, misleading, and quite exciting! This book is an introduction to the basics of surface science including thermodynamics, surface structure, experimental probes, spectroscopy, microscopy, and ion-scattering. Surfaces are the external border of materials to the external worlds, thus by exploring surfaces one can investigate the material.
Handbook of Materials Failure Analysis: With Case Studies from the Construction Industry provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios including material defects, mechanical failure due to various causes, and improper material selection and/or corrosive environment. The book begins with a general overview of materials failure analysis and its importance, and then logically proceeds from a discussion of the failure analysis process, types of failure analysis, and specific tools and techniques, to chapters on analysis of materials failure from various causes. Failure can occur for several reasons, including: materials defects-related failure, materials design-related failure, or corrosion-related failures. The suitability of the materials to work in a definite environment is an important issue. The results of these failures can be catastrophic in the worst case scenarios, causing loss of life. This important reference covers the most common types of materials failure, and provides possible solutions.
Ceramics and ceramic composites are now used in almost all areas of
technology and have potential for even greater and more widespread
applications. To make this a reality, it is increasingly necessary
to understand the microstructure of the material and its
relationship with properties and performance. Central to this is
the characterization of the material, in particular using optical
and scanning electron microscopy techniques. This book acts as an expert guide to the various steps necessary
for successful and accurate characterization of these materials
including the crucially important preparation stage, the techniques
used to reveal the microstructure and the analysis of the
results. In particular, the book presents fundamental information on
preparing polished sections of ceramics and ceramic composites
including the main steps of sampling, sectioning, mounting and
impregnation, and mechanical grinding, lapping and polishing. It
discusses microstructural imaging in the optical microscope (OM)
and the use of the scanning electron microscope (SEM). Etching or
contrast enhancement following final polishing in order to reveal
the material's microstructure is also covered. An entire chapter is devoted to material-specific preparation
procedures for polished sections. These procedures take into
account the properties of the ceramic or composite being examined
and the purpose of the examination. They have proven to be very
suitable for the respective materials and are effective for
revealing the pores. The examples presented here for ceramics and
ceramic composites provide polished sections of good to excellent
quality for routine examination under the optical microscope. They
include tips for etching and contrast enhancement, as well as
microstructural images. Chapter 5 discusses the preparation of
polished sections for purposes of examination and contains
information on producing oblique sections and controlled removal of
material. It also addresses the production of thin sections.
Advances in Ceramic Matrix Composites, Second Edition, delivers an innovative approach to ceramic matrix composites, focusing on the latest advances and materials developments. As advanced ceramics and composite materials are increasingly utilized as components in batteries, fuel cells, sensors, high-temperature electronics, membranes and high-end biomedical devices, and in seals, valves, implants, and high-temperature and wear components, this book explores the substantial progress in new applications. Users will gain knowledge of the latest advances in CMCs, with an update on the role of ceramics in the fabrication of Solid Oxide Fuel Cells for energy generation, and on natural fiber-reinforced eco-friendly geopolymer and cement composites. The specialized information contained in this book will be highly valuable to researchers and graduate students in ceramic science, engineering and ceramic composites technology, and engineers and scientists in the aerospace, energy, building and construction, biomedical and automotive industries.
Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass. The book presents a technical resource for researchers and engineers working with optical thin films and coatings. It is also ideal for professionals in the security, automotive, space and other industries who need an understanding of the topic.
The production of 'polymer nanocomposites' has recently gained considerable attention from both the academic and industrial community, especially in the area of nanoscience. This is mainly due to their enhanced improvements in physico-mechanical, thermal and barrier properties compared to micro and more conventional composites. Their nanoscale dimensions, biodegradable character, cost-effectiveness and sustainability have constituted a stimulus for this increasing interest. Currently there is no limit to the possibility of applications. However, despite all this progress, it is still difficult to achieve uniform dispersion between the filler and the matrix, as agglomerations form far too easily and the production of polymer nanocomposites with high mechanical and thermal properties is still limited. The authors of this proposed book, are of the opinion, that with the increase in scientific publications and the rapid progress in processing possibilities to produce nanocomposites based on various nanoscale fillers (silica/clay), a book that collects all of these scientific findings in one place would be timely and of great interest to both students and scientific researchers, who are concerned with the production, and application of nanocomposites as new innovative materials. The authors aim is to present the latest research findings on the fabrication, properties and applications of nanofillers as reinforcement in polymer nanocomposites. Particular emphasis will be placed on the introduction of various nanofillers (silica/clay) into different elastomeric polymer matrices that will enhance the properties of these materials and their applications. The book will provide an up-to-date review of major innovations in the field and act as a reference for future research in materials science and engineering, which is highly topical due to the demand to produce more sustainable and eco-friendly innovative advanced materials from elastomeric polymers.
Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis.
Nanostructured Biomaterials for Cranio-maxillofacial and Oral Applications examines the combined impact of materials science, biomedical and chemical engineering, and biology to provide enhanced biomaterials for applications in maxillo-facial rehabilitation and implantology. With a strong focus on a variety of material classes, it examines material processing and characterization techniques to decrease mechanical and biological failure in the human body. After an introduction to the field, the most commonly used materials for cranio-facial applications, including ceramics, polymers and glass ceramics are presented. The book then looks at nanostructured surfaces, functionally graded biomaterials and the manufacturing of nanostructured materials via 3-D printing. This book is a valuable resource for scientists, researchers and clinicians wishing to broaden their knowledge in this important and developing field.
Corrosion and its Consequences for Reinforced Concrete Structures serves as an indispensable guide for engineers, scientists and researchers, exploring the fundamental aspects of corrosion in reinforced concrete. Its originality lies in the coupling between the reinforcement corrosion of reinforced concrete and its mechanical behavior.The authors describe the specific theoretical foundations of the corrosion of steel in concrete and its interactions with the structural aspects, including service cracking and defects in the placement of concrete. The book contains a study of the mechanisms of degradation of the mechanical behavior of reinforcements and the reinforced concrete composite, such as reduction of ductility, bearing capacity, redistribution of efforts by formation of plastic hinges and increase in the beam deflection in service. A diagnostic method based on corrosion-induced crack detection is presented in the book, and then paired with a recalculation method which allows us to predict the different aspects of the residual mechanical behavior. Several end-of-life ELS and ELU criteria are described, and the authors propose an approach to estimate the residual lifetime. Finally, the book presents the cathodic protection that allows the progression of corrosion to be contained within the corroded structures. As well as academics, this book is aimed at civil engineers who are faced with the issue of corrosion in aging structures.
Magnetic, Ferroelectric, and Multiferroic Metal Oxides covers the fundamental and theoretical aspects of ferroics and magnetoelectrics, their properties, and important technological applications, serving as the most comprehensive, up-to-date reference on the subject. Organized in four parts, Dr. Biljana Stojanovic leads expert contributors in providing the context to understand the material (Part I: Introduction), the theoretical and practical aspects of ferroelectrics (Part II: Ferroelectrics: From Theory, Structure and Preparation to Application), magnetic metal oxides (Part III: Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics), multiferroics (Part IV: Multiferroic Metal Oxides) and future directions in research and application (Part V: Future of Metal Oxide Ferroics and Multiferroics). As ferroelectric materials are used to make capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects, this book will provide an ideal source for the most updated information.
Biodegradation has been the subject of active concern for the past
40 years. Recently, the field has expanded to encompass a wide
variety of chemicals, a broad array of issues, and the development
of the new bioremediation industry. This book presents the basic
principles of biodegradation and shows how these principles relate
to bioremediation. Authored by a world-renowned environmental
microbiologist, Biodegradation and Bioremediation presents
microbiological, chemical, toxicological, environmental,
engineering, and technological aspects of the subject.
To leave our planet liveable in the next millennium mankind is
forced to find environmentally friendly ways in solving the
problems of everyday life. Among others, technologies of producing
chemicals, absolutely necessary for maintaining a comfortable life,
have to be modified, in some instances fundamentally changed now,
or in the very near future. Developing new technologies requires strong and innovative
fundamental research. In order to provide opportunity for
crossfertilization the Federation of European Zeolite Associations
(FEZA) decided to organise a conference, where researchers from
academia as well as industry can meet, exchange ideas, show and
discuss research efforts and results concerning the development of
environmentally friendly processes and technologies. The conference, and thus the proceedings are divided into two main parts. The first part contains works concerning the synthesis, modification and characterisation of zeolitic materials as catalyst candidates in environmentally friendly technologies. Works in the second part describe various applications starting from developing highly selective reactions for the fine chemical industry, through waste-water treatment to applying zeolite for formulating bacteria for pest control.
This book not only introduces the chemistry and physicochemical properties of phthalonitrile resins, but also describes strategies for crosslinking and structural modification. The authors explore blends and composites of phthalonitriles with other high-performance polymers and give an outlook on the future of the field.
This book comprehensively summarizes important aspects of research in the active field of lignocellulosic (polymer) composites, including polymer materials from or containing cellulose, hemicellulose and lignin. It describes how these materials can be produced from forest products and natural fibers from sources such as jute, flax, sisal, and many more, and even from agricultural residues (like wheat straw, corn stover, or sugarcane bagasse). In times of high demand for renewable green materials, lignocellulosic materials from organic matter produced by trees, shrubs and agricultural crops present a highly attractive feedstock. The international authors explain different treatment and fabrication methods for the production of lignocellulosic materials. Other chapters address the properties of these green materials or illustrate specific applications, ranging from food packaging and household products to adsorbents and even conductive polymer composites. In this way, this book offers a broad and comprehensive overview over the entire field of lignocellulosic composite materials.
Industrial Cutting of Textile Materials, Second Edition, is a comprehensive guide to cutting room operations, offering step-by-step information on processes, technologies and best practice. This new edition is updated to present the latest advances in automated cutting technology, including advanced spreading methods and machines, advanced knife cutting systems, and pattern matching methods processing garment, home and technical textiles. Drawing on her extensive practical experience, the author begins by reviewing initial steps, such as unloading, sorting and quality control of materials, before discussing subsequent operations, including lay planning and marker making, manual and automated spreading and cutting, fusing of cut components, and final work operations such as sorting cut components for further joining. The book also covers manual and advanced automated marker making, spreading and cutting methods for more intricate fabrics, such as striped fabrics and fabrics with check, motif and border patterns, narrow lace and fabrics with pile. With essential information on cutting room operations and best practice, this book provides engineers, technologists and managers with the knowledge they need to maximize accuracy and efficiency, to control production processes effectively, and to improve product quality. The book also enables academics and students engaged in the field of textile and clothing technology to gain a solid understanding of cutting room procedures.
Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation presents a concise overview of the most promising nanomaterials functionalized with ligands for biomedical applications. The first section focuses on current strategies for identifying biological targets and screening of ligand to optimize anchoring to nanomaterials, providing the foundation for the remaining parts. Section Two covers specific applications of functionalized nanomaterials in therapy and diagnostics, highlighting current practice and addressing major challenges, in particular, case studies of successfully developed and marketed functionalized nanomaterials. The final section focuses on regulatory issues and clinical translation, providing a legal framework for their use in biomedicine. This book is an important reference source for worldwide drug and medical devices policymakers, biomaterials scientists and regulatory bodies.
This book provides a general introduction to nanogels, and designs of various stimuli-sensitive nanogels that are able to control drug release in response to specific stimuli. Nanogels are three-dimensional nanosized networks that formed by physically or chemically crosslinking polymers. They have highly interesting properties such as biocompatibility, high stability, particle size adjustment, drug loading capability and modification of the surface for active targeting. They can respond to stimuli which results in the controlled release of drug and targeting of the site.
This is the second, revised edition of a book that has already
proved invaluable to a wide range of readers. Written by a
scientist for scientists and technical people, it goes beyond the
subject matter indicated by the title, filling the gap which
previously existed in the available technical literature. It
includes a wealth of information for physicists, chemists and
engineers who need to know more about thin films for research
purposes, or who want to use this special form of solid material to
achieve a variety of application-oriented goals. |
You may like...
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
CdTe and Related Compounds; Physics…
Robert Triboulet, Paul Siffert
Hardcover
R4,306
Discovery Miles 43 060
Advances in Friction-Stir Welding and…
M. -K Besharati-Givi, P. Asadi
Hardcover
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Electrospinning: Nanofabrication and…
Binding, Xianfeng Wang, …
Paperback
R3,671
Discovery Miles 36 710
|