Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
The book contains proceedings presented at the 9th International Conference on Arch Bridges held in Porto, Portugal on October 2 to 4, 2019. It is addressed to scientists, designers, technicians, stakeholders and contractors, seeking for an up-to-date view of the recent advances in the area of arch bridges.
Basically all properties of semiconductor devices are influenced by the distribution of point defects in their active areas. This book contains the first comprehensive review of the properties of intrinsic point defects, acceptor and donor impurities, isovalent atoms, chalcogens, and halogens in silicon, as well as of their complexes. Special emphasis is placed on compiling the structures, energetic properties, identified electrical levels and spectroscopic signatures, and the diffusion behavior from experimental and theoretical investigations. In addition, the book discusses the fundamental concepts of silicon and its defects, the electron system, diffusion, thermodynamics, and reaction kinetics which form the scientific basis needed for a thorough understanding of the text. Therefore, the book is able to provide an introduction to newcomers in this field up to a comprehensive reference for experts in process technology, solid-state physics, and simulation of semiconductor processes.
This book represents a significant advance in our understanding of the synthesis and properties of two-dimensional (2D) materials. The author's work breaks new ground in the understanding of a number of 2D crystals, including atomically thin transition metal dichalcogenides, graphene, and their heterostructures, that are technologically important to next-generation electronics. In addition to critical new results on the direct growth of 2D heterostructures, it also details growth mechanisms, surface science, and device applications of "epi-grade" 2D semiconductors, which are essential to low-power electronics, as well as for extending Moore's law. Most importantly, it provides an effective alternative to mechanically exfoliate 2D layers for practical applications.
In this book, the author determines that a surface is itself a new material for chemical reaction, and the reaction of the surface provides additional new materials on that surface. The revelation of that peculiarity is what makes this book different from an ordinary textbook, and this new point of view will help to provide a new impetus when graduate students and researchers consider their results. The reaction of surface atoms provides additional new compounds, but these compounds cannot be detached from the surface. Some compounds are passive, but others work as catalysts. One superior feature of the surface is the dynamic cooperation of two or more different functional materials or sites on the same surface. This fact has been well established in the preferential oxidation of CO on platinum supported on a carbon nanotube with Ni-MgO at its terminal end. The Pt and Ni-MgO are perfectly separated, but these two are indispensable for the selective oxidation of CO in H2, where the H2O molecule plays a key role. The reader will understand that the complexity of catalysis is due to the complexity of the dynamic processes on the surface.
This book represents the first ever scientific monograph including an in-depth analysis of all major field-assisted sintering techniques. Until now, the electromagnetic field-assisted technologies of materials processing were lacking a systematic and generalized description in one fundamental publication; this work promotes the development of generalized concepts and of comparative analyses in this emerging area of materials fabrication. This book describes modern technologies for the powder processing-based fabrication of advanced materials. New approaches for the development of well-tailored and stable structures are thoroughly discussed. Since the potential of traditional thermo-mechanical methods of material treatment is limited due to inadequate control during processing, the book addresses ways to more accurately control the resultant material's structure and properties by an assisting application of electro-magnetic fields. The book describes resistance sintering, high-voltage consolidation, sintering by low-voltage electric pulses (including spark plasma sintering), flash sintering, microwave sintering, induction heating sintering, magnetic pulse compaction and other field-assisted sintering techniques. Includes an in-depth analysis of all major field-assisted sintering techniques; Explains new techniques and approaches for material treatment; Provides detailed descriptions of spark plasma sintering, microwave sintering, high-voltage consolidation, magnetic pulse compaction, and various other approaches when field-assisted treatment is applied.
Today high magnetic fields play an increasingly important role in many scientific fields. Formerly their use was largely restricted to the measurement of physical phenomena and the characterization of materials. But more recently they have found application in many new areas such as materials processing, crystal growth, and even in chemistry and biology. This book gives a broad survey of some of the most exciting recent applications of high magnetic fields, with the emphasis on materials science. These include, among others, the study of conventional and high-Tc superconductors, semiconductors, low-dimensional organic conductors, conducting polymers and protein crystallization. Each chapter begins with a general introduction and goes on to present detailed experimental results together with their interpretation. Researchers and students alike will find this book an excellent introduction to, and overview of current applications of static high magnetic fields.
With the present issue of Topics in Current Chemistry, the fourth and final volume concluding the mini-series on dendrimer chemistry has appeared. With a focus on the interdisciplinary bridges to neighboring fields, the contributions to this volume focus on coordination, catalysis and self-assembly, nicely balanced by a synthesis-based article on dendritic oligoethers.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
Damage mechanics is concerned with mechanics-based analyses of microstructural events in solids responsible for changes in their response to external loading. The microstructural events can occur as cracks, voids, slipped regions, etc., with a spatial distribution within the volume of a solid. If a solid contains oriented elements in its microsctructure, e.g. fibers, the heterogeneity and asisotropy aspects create situations which form a class of problems worthy of special treatment. This book deals with such treatments with particular emphasis on application to technological composite materials. Chapter one describes the basic principles underlying both the micromechanics approach and the continuum damage mechanics approach. It also reviews the relevant statistical concepts. The next three chapters are devoted to developments of the continuum damage mechanics approach related to characterization of damage with internal variables, evolution of damage and its coupling with other inelastic effects such as plasticity. Chapter 5 describes observations of damage from notches in composite laminates and puts forward some pragmatic modelling ideas for a complex damage configuration. The next two chapters form the bulk of the micromechanics approach in this volume. The first one deals with microcracking and the other with interfacial damage in composite materials.
Cementitious materials, rocks and fibre-reinforced composites commonly termed as "quasibrittle," need a different fracture mechanics approach to model the crack propagation study because of the presence of significant size of fracture process zone ahead of the crack-tip. Recent studies show that concrete structures manifest three important stages in fracture process: crack initiation, stable crack propagation and unstable fracture or failure. Fracture Mechanics concept can better explain the above various stages including the concepts of ductility, size-effect, strain softening and post-cracking behavior of concrete and concrete structures. The book presents a basic introduction on the various nonlinear concrete fracture models considering the respective fracture parameters. To this end, a thorough state-of-the-art review on various aspects of the material behavior and development of different concrete fracture models is presented. The development of cohesive crack model for standard test geometries using commonly used softening functions is shown and extensive studies on the behavior of cohesive crack fracture parameters are also carried out. The subsequent chapter contains the extensive study on the double-"K" and double-"G" fracture parameters in which some recent developments on the related fracture parameters are illustrated including introduction of weight function method to Double-"K" Fracture Model and formulization of size-effect behavior of the double-"K" fracture parameters. The application of weight function approach for determining of the "KR"-curve associated with cohesive stress distribution in the fracture process zone is also presented. Available test data are used to validate the new approach. Further, effect of specimen geometry, loading condition, size-effect and softening function on various fracture parameters is investigated. Towards the end, a comparative study between different fracture parameters obtained from various models is presented."
This book expounds on progress made over the last 35 years in the theory, synthesis, and application of triboluminescence for creating smart structures. It presents in detail the research into utilization of the triboluminescent properties of certain crystals as new sensor systems for smart engineering structures, as well as triboluminescence-based sensor systems that have the potential to enable wireless, in-situ, real time and distributed (WIRD) structural health monitoring of composite structures. The sensor component of any structural health monitoring (SHM) technology - measures the effects of the external load/event and provides the necessary inputs for appropriate preventive/corrective action to be taken in a smart structure - sits at the heart of such a system. This volume explores advances in materials properties and structural behavior underlying creation of smart composite structures and sensor systems for structural health monitoring of critical engineering structures, such as bridges, aircrafts, and wind blades.
This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics and other fields where the mechanical response of soft solids is relevant. "Soft Solids: A Primer to the Theoretical Mechanics of Materials" is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunity to apply what they learned in the current chapter and to build upon the material in prior chapters.
The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.
Magnetoelectronics is a novel and rapidly developing field. This
new field is frequently referred to as spin-electronics or
spintronics. It includes spin-utilizing devices that need neither a
magnetic field nor magnetic materials. In semiconductor devices,
the spin of the carriers has only played a very modest role so far
because well established semiconductor devices are non-magnetic and
show only negligible effects of spin. Nanoscale thin films and
multilayers, nanocrystalline magnetic materials, granular films,
and amorphous alloys have attracted much attention in the last few
decades, in the field of basic research as well as in the broader
field of materials science. Such heterogeneous materials display
uncommon magnetic properties that virtually do no occur in bulk
materials. This is true, in particular with respect to surface
(interface) magnetic anisotropy and surface (interface)
magnetostrictive strains and giant magnetoresistance. The local
atomic arrangement at the interface differs strongly from that in
the bulk. The local symmetry is lowered, so that some interactions
are changed or are missing altogether.
Crystal growth and nucleation are treated in the specialized literature in different ways depending on the discipline in question (physics, physical chemistry, chemical engineering) and on the theoretical approaches (atomistic vs continuum approach as regards crystal growth, phase vs chemical concept as regards nucleation). This book relates the different approaches to one another, giving preference to atomistic treatments by the methods of statistical thermodynamics and chemical kinetics. This unified approach also facilitates an understanding of some related phenomena of surface physics, such as adsorption, wetting etc. The book allows research novices and graduate students to get an insight into the physics of the phenomena and to interpret some of the experimental results.
This book provides in-depth knowledge about the fabrications, structures, properties and applications of three outstanding electrochemically engineered nanoporous materials including porous silicon, nanoporous alumina and nanotubular titania. The book integrates three major themes describing these materials. The first theme is on porous silicon reviewing the methods for preparation by electrochemical etching, properties and methods for surface functionalization relevant for biosensing applications. Biomedical applications of porous silicon are major focus, described in several chapters reviewing recent developments on bioanalysis, emerging capture probes and drug delivery. The second theme on nanoporous alumina starts with describing the concept of self-organized electrochemical process used for synthesis nanopore and nanotube structures of valve metal oxides and reviewing recent development and progress on this field. The following chapters are focused mainly on optical properties and biosensing application of nanoporous alumina providing the reader with the depth of understanding of the structure controlled optical and photonic properties and design of optical biosensing devices using different detection principles such as photoluminescence, surface plasmon resonance, reflective spectrometry, wave guiding, Raman scattering etc. The third theme is focused on nanotubular titania reviewing three key applications including photocatalysis, solar cells and drug delivery. The book represents an important resource for academics, researchers, industry professionals, post-graduate and high-level undergraduate students providing them with both an overview of the current state-of-the-art on these materials and their future developments.
Agricultural biomass is abundant worldwide and it can be considered as alternative source of renewable and sustainable materials which can be used as potential materials for different applications. Despite this enormous production of agricultural biomass, only a small fraction of the total biomass is utilized for different applications. Industry must be prepared to take advantage of the situation and utilize the available biomass in the best possible manner. Agricultural biomass such as natural fibres has been successfully investigated as a great potential to be used as a renewable and sustainable materials for the production of composite materials. Natural fibres offer excellent specific properties and have potential as outstanding reinforcing fillers in the matrix and can be used as an alternative material for biocomposites, hybrid composites, pulp, and paper industries. Natural fibre based polymer composites made of jute, oil palm, flex, hemp, kenaf have a low market cost, attractive with respect to global sustainability and find increasing commercial use in different applications. Agricultural biomass based composites find applications in a number of fields viz., automotive industry and construction industry. Future research on agricultural biomass-natural fibre based composites should not only be limited to its automotive applications but can be explored for its application in aircraft components, construction industry, rural housing and biomedical applications. In this book we will cover the chemical, physical, thermal, electrical, and biodegradability properties of agricultural biomass based composite materials and its different potential applications. The main goal of this volume is to familiarize researchers, scientists and engineers with the unique research opportunities and potentials of agricultural biomass based materials. Up-to-date information on alternative biomass utilization Academic and industry leaders discuss unique properties of biomass based composite materials Direct application of agricultural biomass materials as sustainable and renewable alternatives
The objectives of this book are twofold: 1. To provide a thorough examination of the materials science of cellulosic fibers with emphasis on the characterization of structure-property relations, and 2. To advance knowledge of how to best analyze cellulosic fibrous networks and composites, and, ultimately, engineer "novel" cellulose-based systems of superior performance and functionality. The design of new materials through the study of living systems, or bio-imitation, is burgeoning to become an established field, generally referred to as biomimetics. The latter, as with materials science, in general, prominently features multi-disciplinarity where new developments in mathematics, physics, chemistry and engineering continue to inspire novel areas of research and development. The book is structured in five chapters which provide a sequential treatment of the running theme: deformation mechanics and the physical, morphological and mechanical characterization of native cellulose fibers networks and composites. The heart of the book is Chapter 3, Damage Accumulation in Fibers, which treats the experimental methodology for fatigue testing of single fibers and the engendered results. In-depth examinations of the morphology, structure and chemical composition of native cellulose fibers, and the mechanics of deformation in these natural composite fibers are proffered in Chapters 1 and 2, respectively. The fourth chapter, Fractal Simulation of Crack Propagation, presents a fractal-based approach to modeling damage accumulation in materials. Fractals lend themselves well to modeling such randomly-oriented phenomena as crack propagation and fracture. The last chapter, Fibrous Structures: Networks and Composites, comprises analytical approaches for handling networks and composites.
This book bridges the gap between theoretical concepts and their implementations, especially for the high-performance structures/components related to advanced composite materials. This work focuses on the prediction of various structural responses such as deformations, natural frequencies etc. of advanced composites under complex environments and/or loading conditions. In addition, it discusses micro-mechanical material modeling of various advanced composite materials that involve different structures ranging from basic to advanced, such as beams, flat and curved panels, shells, skewed, corrugated, and other materials, as well as various solution techniques via analytical, semi-analytical, and numerical approaches. This book: Covers micro-mechanical material modeling of advanced composite materials Describes constitutive models of different composite materials and kinematic models of different structural configuration Discusses pertinent analytical, semi-analytical, and numerical techniques Focusses on structural responses relating to deformations, natural frequencies, and critical loads under complex environments Presents actual demonstrations of theoretical concepts as applied to real examples using Ansys APDL scripts This book is aimed at researchers, professionals, and graduate students in mechanical engineering, material science, material engineering, structural engineering, aerospace engineering, and composite materials.
Volume 7 of the Handbook of Magnetic Materials provides an overview of some of the most exciting topics in magnetism today. Firstly, a substantial step forward in the understanding of metallic magnetism has been reached by means of electronic band structure calculation. Progress in this area has been made not only due to the availability of high speed computing machines but also due to sophistication in the computational methodology. Two chapters are devoted to this subject, one of which is devoted to the elements and the other dealing primarily with 4f and 5f systems, including examples of the large group of intermetallic compounds. In both chapters the authors have concentrated on explaining the physics behind these band calculations. The chapters are written in a manner understandable to scientists having no experience with band calculations. Thin film technology has become a key issue in high density
magnetic and magneto-optical recording and will be dealt with in
future volumes of the Handbook. The present volume introduces the
field with a chapter on the magnetism of ultrathin transition metal
films, describing the richness in novel magnetic phenomens that has
been encountered in the past few years in these materials. Of equal
interest are the novel magnetic phenomena observed when magnetic
moments are incorporated in a semiconducting matrix. A
comprehensive description of these materials is found in the
chapter on diluted magnetic semiconductors. A separate chapter is
devoted to the progress made in the field of heavy fermions and
valence fluctuations, emphasis being placed on the important
results obtained by means of neutron scattering. A detailed review
of the progress made in the field of rare earth based intermetallic
compounds in combination with 3d transition metals completes this
multifaceted volume.
The development of new high-tech applications and devices has created a seemingly insatiable demand for novel functional materials with enhanced and tailored properties. Such materials can be achieved by three-dimensional structuring on the nanoscale, giving rise to a significant enhancement of particular functional characteristics which stems from the ability to access both surface/interface and bulk properties. The highly ordered, bicontinuous double-gyroid morphology is a fascinating and particularly suitable 3D nanostructure for this purpose due to its highly accessible surface area, connectivity, narrow pore diameter distribution and superb structural stability. The presented study encompasses a wide range of modern nanotechnology techniques in a highly versatile bottom-up nanopatterning strategy that splits the fabrication process into two successive steps: the preparation of mesoporous double-gyroid templates utilizing diblock copolymer self-assembly, and their replication with a functional material employing electrochemical deposition and atomic layer deposition. The double-gyroid structured materials discussed include metals, metal oxides, and conjugated polymers, which are applied and characterized in high-performance devices, such as electrochromic displays, supercapacitors, chemical sensors and photovoltaics. This publication addresses a wide range of readers, from researchers and specialists who are professionally active in the field, to more general readers interested in chemistry, nanoscience and physics.
This book presents how metasurfaces are exploited to develop new low-cost single sensor based multispectral cameras. Multispectral cameras extend the concept of conventional colour cameras to capture images with multiple color bands and with narrow spectral passbands. Images from a multispectral camera can extract significant amount of additional information that the human eye or a normal camera fails to capture and thus have important applications in precision agriculture, forestry, medicine, object identifications, and classifications. Conventional multispectral cameras are made up of multiple image sensors each externally fitted with a narrow passband wavelength filters, optics and multiple electronics. The need for multiple sensors for each band results in a number of problems such as being bulky, power hungry and suffering from image co-registration problems which in turn limits their wide usage. The above problems can be eliminated if a multispectral camera is developed using one single image sensor.
Industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Considerable growth has been seen in the use of biocomposites in the domestic sector, building materials, aerospace industry, circuit boards, and automotive applications over the past decade, but application in other sectors until now has been limited. Green Approaches to Biocomposite Materials Science and Engineering explores timely research on the various available types of natural fibers and the use of these fibers as a sustainable alternative to synthetic fibers and polymers. Emphasizing research-based solutions for sustainability across various industries, this publication is an essential reference source for engineers, researchers, environmental scientists, and graduate-level students.
|
You may like...
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Scientific Basis for Nuclear Waste…
Lara Duro, Javier Gimenez, …
Hardcover
R1,966
Discovery Miles 19 660
State-Of-The-Art Developments in…
Rozaliya Barabash, Liane G. Benning, …
Hardcover
R2,330
Discovery Miles 23 300
Tribology of Machine Elements…
Giuseppe Pintaude, Tiago Cousseau, …
Hardcover
|