![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, Second Edition gives extensive information on the microorganisms involved in the biodegradation of materials, along with the biocides which are permitted for use according to the most up-to-date worldwide legislation. Mechanisms of biodegradation and biodeterioration, results of biodeterioration, and methods of biostabilization are covered for a large number of products, making the title relevant for a range of industries and applications, including construction, coatings/paints, medical and pharmaceutical applications, and electronics. In addition, the health and safety aspects of biocide application are covered in detail, as well as the personal protection of practitioners who are required to use them. The contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.
This book reviews the state of the art in the use of organic materals as physical, chemical and biomedical sensors in a variety of application settings. Topics covered include organic semiconductors for chemical and physical sensing; conducting polymers in sensor applications; chemically functionalized organic semiconductors for highly selective sensing; composite organic-inorganic sensors; artificial skin applications; organic thin film transistor strain gauges for biomedical applications; OTFT infrared sensors for touchless human-machine interaction; smart fabric sensors and e-textile technologie; image capture with organic sensors; organic gas sensors and electronic noses; electrolyte gated organic transistors for bio-chemical sensing; ion-selective organic electrochemical transistors; DNA biosensors; metabolic organic sensors; and conductive polymer based sensors for biomedical applications.
Although the present edition of Fundamentals of Creep in Metals and Alloys remains broadly up to date for metals, there are a range of improvements and updates that are either desirable, or required, in order to ensure that the book continues to meet the needs of researchers and scholars in the general area of creep plasticity. Besides updating the areas currently covered in the second edition with recent advances, the third edition will broaden its scope beyond metals and alloys to include ceramics, covalent solids, minerals and polymers, thus addressing the fundamentals of creep in all basic classes of materials.
Research and developments in neuroprostheses are providing scientists with the potential to greatly improve the lives of individuals who have lost some function. Neuroprostheses can help restore or substitute motor and sensory functions which may have been damaged as a result of injury or disease. However, these minute implantable sensors also provide scientists with challenges. This important new book provides readers with a comprehensive review of neuroprostheses. Chapters in part one are concerned with the fundamentals of these devices. Part two looks at neuroprostheses for restoring sensory function whilst part three addresses neuroprostheses for restoring motor function. The final set of chapters discusses significant considerations concerning these sensors.
There is a major lack of fundamental knowledge and understanding on the interaction between a filler and the polymer matrix. When it comes to nanoscale fillers, such as layered silicates, carbon nanotubes, graphene or cellulose nanofibers it is even more important to know accurate structure-property relationships as well as identifying the parameters influencing material behavior. The reason for the lack of knowledge on how to process nanocomposites and why there are so few applications is that several scientific fields are affected and a joint effort of those scientific communities involved is necessary - starting from the filler manufacturing or pre-processing over polymer chemistry to the polymer processing. Within this book for the first time all involved scientific areas are viewed together providing an all-embracing coverage of all stages of polymer clay nanocomposites processing from lab scale to large scale / industry scale - stages from the raw material over manufacturing of polymer clay nanocomposites to characterization and the final products. The reader of the book will gain insight in the
physical/chemical pre-processing of layered silicates and their
incorporation into a polymer matrix using sophisticated
technologies (such as advanced compounding) as well as in real-time
quality control of the nanocomposite production and future
prospects. Finally nanotoxicological and nanosafety aspects will
complete the book.
Multiferroics, materials with a coexistence of magnetic and ferroelectric order, provide an efficient route for the control of magnetism by electric fields. The authors cover multiferroic thin-film heterostructures, device architectures and domain/interface effects. They critically discuss achievements as well as limitations and assess opportunities for future applications.
"Damage on Pumps and Systems. The Handbook for the Operation of Centrifugal Pumps" offers a combination of the theoretical basics and practical experience for the operation of circulation pumps in the engineering industry. Centrifugal pumps and systems are extremely vulnerable to damage
from a variety of causes, but the resulting breakdown can be
prevented by ensuring that these pumps and systems are operated
properly. This book provides a total overview of operating
centrifugal pumps, including condition monitoring, preventive
maintenance, life cycle costs, energy savings and economic aspects.
Extra emphasis is given to the potential damage to these pumps and
systems, and what can be done to prevent breakdown.
Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material "smart" and "intelligent". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering, drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of switchable and responsive materials and surfaces, exploring thermo-responsive polymers, environmentally responsive polyelectrolytes and zwitterionic polymers, as well as peptide-based and photonic sensitive switchable materials. Further chapters include a detailed overview of the preparation and analysis of switchable polymer brushes and copolymers for biomedical application. Part two explores the biological interactions and biomedical applications of switchable surfaces, where expert analysis is provided on the interaction of switchable surfaces with proteins and cells. The interaction of stimuli-sensitive polymers for tissue engineering and drug delivery with biosurfaces is critiqued, whilst the editor provides a skillful study into the application of responsive polymers in implantable medical devices and biosensors.
Surface modification of magnesium and its alloys for biomedical applications: Biological interactions, mechanical properties and testing, the first of two volumes, is an essential guide on the use of magnesium as a degradable implant material. Due to their excellent biocompatibility and biodegradability, magnesium based degradable implants provide a viable option for the permanent metallic implants. This volume focuses on the fundamental concepts of surface modification of magnesium, its biological interactions, mechanical properties and, in vitro and in vivo testing. The contents of volume 1 is organized and presented in three parts. Part 1 reviews the fundamental aspects of surface modification of magnesium, including surface design, opportunities, challenges and its role in revolutionizing biodegradable biomaterials. Part 2 addresses the biological and mechanical properties covering an in vivo approach to the bioabsorbable behavior of magnesium alloys, mechanical integrity and, the effects of amino acids and proteins on the performance of surface modified magnesium. Part 3 delves in to testing and characterization, exploring the biocompatibility and effects on fatigue life alongside the primary characteristics of surface modified magnesium. All chapters are written by experts, this two volume series provides systematic and thorough coverage of all major modification technologies and coating types of magnesium and its alloys for biomedical applications.
Many physical properties of our universe, such as the relative strength of the fundamental interactions, the value of the cosmological constant, etc., appear to be fine-tuned for existence of human life. One possible explanation of this fine tuning assumes existence of a multiverse, which consists of a very large number of individual universes having different physical properties. Intelligent observers populate only a small subset of these universes, which are fine-tuned for life. In this book we will review several interesting metamaterial systems, which capture many features of important cosmological models and offer insights into the physics of many other non-trivial spacetime geometries, such as microscopic black holes, closed time-like curves (CTCs) and the Alcubierre warp drive.
Volume 7 & 8
This book describes the fundamentals and potential applications
of friction stir superplasticity for unitized structures .
Conventional superplastic forming of sheets is limited to the
thickness of 3 mm because the fine grained starting material is
produced by rolling. Friction stir superplasticity has grown
rapidly in the last decade because of the effectiveness of
microstructural refinement. The thickness of the material remains
almost constant, and that allows for forming of thick
sheets/plates, which was not possible before. The field has reached
a point where designers have opportunities to expand the extent of
unitized structures, which are structures in which the traditional
primary part and any supporting structures are fabricated as a
single unit. With advanced optimization and material
considerations, this class of structures can be lighter weight and
more efficient, making them less costly, as well as mechanically
less complex, reducing areas of possible failure.
Open microfluidics, the study of microflows having a boundary with surrounding air, encompasses different aspects such as paper or thread-based microfluidics, droplet microfluidics and open-channel microfluidics. Open-channel microflow is a flow at the micro-scale, guided by solid structures, and having at least a free boundary (with air or vapor) other than the advancing meniscus. This book is devoted to the study of open-channel microfluidics which (contrary to paper or thread or droplet microfluidics) is still very sparsely documented, but bears many new applications in biology, biotechnology, medicine, material and space sciences. Capillarity being the principal force triggering an open microflow, the principles of capillarity are first recalled. The onset of open-channel microflow is next analyzed and the fundamental notion of generalized Cassie angle (the apparent contact angle which accounts for the presence of air) is presented. The theory of the dynamics of open-channel microflows is then developed, using the notion of averaged friction length which accounts for the presence of air along the boundaries of the flow domain. Different channel morphologies are studied and geometrical features such as valves and capillary pumps are examined. An introduction to two-phase open-channel microflows is also presented showing that immiscible plugs can be transported by an open-channel flow. Finally, a selection of interesting applications in the domains of space, materials, medicine and biology is presented, showing the potentialities of open-channel microfluidics.
Silicon technology is evolving rapidly, particularly in
board-to-board or chip-to chip applications. Increasingly, the
electronic parts of silicon technology will carry out the data
processing, while the photonic parts take care of the data
communication. For the first time, this book describes the merging
of photonics and electronics in silicon and other group IV
elements. It presents the challenges, the limitations, and the
upcoming possibilities of these developments. The book describes
the evolution of CMOS integrated electronics, status and
development, and the fundamentals of silicon photonics, including
the reasons for its rapid expansion, its possibilities and
limitations. It discusses the applications of these technologies
for such applications as memory, digital logic operations, light
sources, including drive electronics, optical modulators,
detectors, and post detector circuitry. It will appeal to engineers
in the fields of both electronics and photonics who need to learn
more about the basics of the other field and the prospects for the
integration of the two. Describes the evolution of CMOS integrated electronics, status and development, and the fundamentals of silicon photonics
"Nanomaterials in the Environment" covers all aspects of manufactured nanomaterials and their impact and behavior in the environment. Starting with a general overview of the field, emphasizing key points and background, the book then covers crucial specific areas, including nanomaterial transformations in the environment due to dissolution, aggregation, and other processes, and the modeling of environmental exposure and fate. A chapter on formation of the eco-corona investigates the state of the art with specific reference to the protein corona literature in human health. Finally, there are chapters on mechanisms of biouptake and toxicity. The fast-moving nature of the field and the quality of the
submissions make this book essential reading for all those working
in this area. It is suitable for researchers from Masters-level
upwards, and for regulators and industry. The book can also be used
as a high-level teaching aid. |
You may like...
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
|