![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
A first on ultrafast phenomena in carbon nanostructures like graphene, the most promising candidate for revolutionizing information technology and communication The book introduces the reader into the ultrafast nanoworld of graphene and carbon nanotubes, including their microscopic tracks and unique optical finger prints. The author reviews the recent progress in this field by combining theoretical and experimental achievements. He offers a clear theoretical foundation by presenting transparently derived equations. Recent experimental breakthroughs are reviewed. By combining both theory and experiment as well as main results and detailed theoretical derivations, the book turns into an inevitable source for a wider audience from graduate students to researchers in physics, materials science, and electrical engineering who work on optoelectronic devices, renewable energies, or in the semiconductor industry.
This book is the result of recent research that deals with the built environment and innovative materials, carried out by specialists working in universities and centers of research in different professional fields architecture, engineering, physics and in an area that that spans from the Mediterranean Sea to the Persian Gulf, and from South Eastern Europe to the Middle East. This book takes the necessity of re-shaping the concept of building design in order to transform buildings from large scale energy consumers to energy savers and producers into consideration. The book is organized in two parts: theory and case studies. For the theoretical part, we chose from the wide range of sources that provide energy efficient materials and systems the two that seem to be endless: the sun and vegetation. Their use in building products represents a tool for specialists in the architectural design concept. The case-studies presented analyze different architectural programs, in different climates, from new buildings to rehabilitation approaches and from residential architecture to hospitals and sports arenas; each case emphasizes the interdisciplinarity of the building design activity in order to help readers gain a better understanding of the complex approach needed for energy efficient building design
This volume explores how ionic liquids are used in different areas of biotechnology. It also provides insights on the interaction of ionic liquids with biomolecules and biomaterials. Ionic liquids have become essential players in the fields of synthesis, catalysis, extraction and electrochemistry, and their unique properties have opened a wide range of applications in biotechnology. Readers will discover diverse examples of the application of ionic liquids as solvents for biomaterials extraction and pretreatment, in enzymatic and whole cell catalysed reaction, and as activation agents for biocatalysis. Particular attention is given to the biologically functionalized ionic liquids employed in medical and pharmaceutical applications. Although ionic liquids are considered "green solvents", the contributing authors will also explore their environmental impact when applied to biotechnology. Chemical, biological and medical scientists interested in ionic liquids and biotechnology will find this work instructive and informative.
The field of Corrosion Modelling has evolved tremendously since the first work was published in the early 1980's. Its initial application in the offshore industry has expanded to the point where modelling is applied in practically all application areas and the software has been developed to fulfil these needs. This book presents contributions from the most influential researchers and developers of corrosion modelling tools and users who apply the technology in their industry. Providing an excellent introduction to the state-of-the-art in computer modelling of corrosion and related electrochemical processes, this book will be of value to corrosion engineers and physicists, model developers and researchers.
This monograph provides a concise overview of the main theoretical and numerical tools to solve homogenization problems in solids with finite elements. Starting from simple cases (linear thermal case) the problems are progressively complexified to finish with nonlinear problems. The book is not an overview of current research in that field, but a course book, and summarizes established knowledge in this area such that students or researchers who would like to start working on this subject will acquire the basics without any preliminary knowledge about homogenization. More specifically, the book is written with the objective of practical implementation of the methodologies in simple programs such as Matlab. The presentation is kept at a level where no deep mathematics are required.
Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties. This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research.
This book covers remarkable contemporary nanomaterials such as carbon nanomaterials, nanoclays, quantum dots, MXene, and metal-organic frameworks. Each chapter discusses the synthesis techniques, characterization methods, properties, and the nanomaterials' use in different aspects of biomedical, energy, polymers, material construction, biosensors, coatings, and catalysis. Moreover, commercialization challenges and environmental risks of nanomaterials are also covered in depth. The book provides an understanding of the fundamental properties, limitations and challenges in nanomaterials synthesis, serving as a valuable resource for researchers, graduate students, academicians, and consultants working with nanomaterials for engineering applications.
This book covers newly emerging two-dimensional nanomaterials which have been recently used for the purpose of water purification. It focuses on the synthesis methods of 2D materials and answers how scientists/engineers/nanotechnologist/environmentalists could use these materials for fabricating new separation membranes and most probably making commercially feasible technology. The chapters are written by a collection of international experts ensuring a broad view of each topic. The book will be of interest to experienced researchers as well as young scientists looking for an introduction into 2D materials-based cross-disciplinary research.
Chalcogenide glass is made up of many elements from the
Chalcogenide group. The glass is transparent to infrared light and
is useful as a semiconductor in many electronic devices. For
example, chalcogenide glass fibers are a component of devices used
to perform laser surgery.
This book summarizes the research results of carbide control in special steel from the authors. It includes the evolution and control of carbide in special steel in the process of electroslag remelting, rolling, and heat treatment, as well as the effect of alloying treatment (rare earth, magnesium, nitrogen, titanium) as heterogeneous nucleating agent on the carbides in special steel. It helps the readers to understand the formation mechanism and control technology of carbide in special steel deeply for improving the quality of special steel further. The book is useful as a reference for researchers, practitioners, teachers, and engineering management team in the fields of metallurgy and materials.
Corrosion is a degrading material process frequently encountered in engineering structures and components, which may lead to costly and catastrophic failures if not properly and timely addressed. This volume describes a wide spectrum of experimental and analytical studies, which provide a fairly comprehensive account of corrosion manifestations and methodologies for addressing them in structural and industrial design. As such, it is expected to make a valuable reference publication for engineers and scientists interested in the protection of structures and components from harmful and potentially ruinous corrosive action.The collected articles comprising this volume address issues which can be categorised into two main areas. The first is concerned with material science approaches to corrosion, that is, visual or instrumental means of assessing existing behaviour or effectiveness of corrective measures and techniques. The second part of the volume comprises boundary element simulations of cathodic protection schemes for the purpose of predicting and optimising their performance.A number of practical problems are analysed such as: the coating condition on a ballast tank wall; the impressed current cathodic protection of an offshore platform and minimizing a ship's electric and magnetic signature. Topics covered include: Elemental identification; Material loss; Strain fields; Stress corrosion cracking; Corrosion resistance; Fretting corrosion; Contact surface damage; Electrochemical testing; Coating conditions; Cathodic protection; Current density distribution; Pipelines and deep well casings; Electric and magnetic signatures; Coating damage effects; Galvanic corrosion.
This thesis details the novel preparation methods and the improved properties of two-dimentional (2D) black phosphorene (BP) and the polymer nanocomposites. Various surface treatment methods are used, and through these designs, better mechanical, thermal and flame retardant properties are achieved for these functionalized materials, thus reducing the fire risk of the polymer composite system.
This textbook describes the design of reinforced and prestressed concrete structures according to the latest advances both in the field of materials, concrete and steel, and in the field of structural analysis. These advances have been included in current version of Eurocode 2, which is taken as reference. All subjects are presented starting from their theoretical bases and passing to corresponding EC2 formulations. A large part of the book is concerned with the most innovative EC2 parts, like nonlinear structural analyses, second-order effects, punching and strut-and-tie models. The textbook is equipped with numerous worked examples, useful for the reader who is not familiar with the design of reinforced and prestressed concrete structures by the Limit State Method. Examples have been chosen among the most frequent cases of the professional practice. Thanks to this structure, it can be of interest both to structural designers for their professional training and to students of engineering and architecture schools for their studies. The volume contains twelve chapters, which follow the same structure of EC2, except for chapter 6 (dealing with prestressed concrete structures), which does not match any chapter of EC2, as prestressed concrete is considered in EC2 as a particular case of reinforced concrete, and corresponding formulations are shed over different chapters.
Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry.
This book summarizes science and technology of a new generation of high-energy andinsensitive explosives. The objective is to provide professionals with comprehensiveinformation on the synthesis and the physicochemical and detonation properties ofthe explosives. Potential technologies applicable for treatment of contaminated wastestreams from manufacturing facilities and environmental matrices are also be included.This book provides the reader an insight into the depth and breadth of theoreticaland empirical models and experimental techniques currently being developed in thefield of energetic materials. It presents the latest research by DoD engineers andscientists, and some of DoD's academic and industrial researcher partners. The topicsexplored and the simulations developed or modified for the purposes of energetics mayfind application in other closely related fields, such as the pharmaceutical industry.One of the key features of the book is the treatment of wastewaters generated duringmanufacturing of these energetic materials.
This first book in the Materials and Processes for Electronics
Applications series answers questions vital to the successful
design and manufacturing of electronic components, modules, and
systems such as:
Every sector faces unique challenges in the transition to sustainability. Across each, materials will play a key role. That will depend on novel materials and processes, but these will only be effective with a solid understanding of the trends in the market. For each respective sector, the papers in this collection will explore the trends and drivers toward sustainability, the enabling materials technologies and challenges, and the tools to evaluate their implications. Major sections in REWAS 2019 include: Disruptive Material Manufacturing: Scaling and Systems Challenges Education and Workforce Development Rethinking Production Secondary and Byproduct Sources of Materials, Minerals, and Metals
This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.
Designed for Junior/Senior undergraduate courses. This revision of a classical text is intended to acquaint the reader, who has no prior knowledge of the subject, with the theory of x-ray diffraction, the experimental methods involved, and the main applications. The text is a collection of principles and methods designed directly for the student and not a reference tool for the advanced reader
Superfluid helium is a quantum liquid that exhibits a range of counter-intuitive phenomena such as frictionless flow. Quantized vortices are a particularly important feature of superfluid helium, and all superfluids, characterized by a circulation that can only take prescribed integer values. However, the strong interactions between atoms in superfluid helium prohibit quantitative theory of vortex behaviour. Experiments have similarly not been able to observe coherent vortex dynamics. This thesis resolves this challenge, bringing microphotonic techniques to bear on two-dimensional superfluid helium, observing coherent vortex dynamics for the first time, and achieving this on a silicon chip. This represents a major scientific contribution, as it opens the door not only to providing a better understanding of this esoteric quantum state of matter, but also to building new quantum technologies based upon it, and to understanding the dynamics of astrophysical superfluids such as those thought to exist in the core of neutron stars. |
![]() ![]() You may like...
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R103,997
Discovery Miles 1 039 970
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,761
Discovery Miles 57 610
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R82,245
Discovery Miles 822 450
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R4,065
Discovery Miles 40 650
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,328
Discovery Miles 33 280
|