![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
This book aims at identifying novel advanced materials of extreme wetting properties (MEWP) for practical, industrial applications. The state-of-the art superhdyrophobic, superhdyrophilic, superoleophobic, superoleophilic, and superomniphobic materials, that are MEWP, with respect to their technological and emerging industrial applications are discussed in this book. MEWP offer new perspectives providing numerous potential applications. Hence, these advanced MEWP have the potential to lead to a new generation of products and devices with unique properties and functionalities. Despite the large scientific progress on MEWP there are still some obstacles which have to be solved to make these materials available for real life applications. Recent advances on the production strategies, including methods and materials, of MEWP has shown that the durability and sustainability obstacles can be addressed thus offering the possibility for industrial exploitation. MEWP with wettabilities ranging from superhydrophobicity to superhydrophilicity provide promising avenues for several and important applications, which sometimes are crucial for the humankind. This book also discusses a large variety of other potential applications of MEWP, thus providing new ideas to scientists and engineers for further exploitation of these novel materials. Moreover, the whole spectrum of the recent technological developments, current research progress, future outlook, and the modern trends in the applications of MEWP are discussed in a consistent approach.
This book presents a generalised computational model for the degradation of resorbable composites, using analytic expressions to represent the interwoven phenomena present during degradation. It then combines this modelling framework with a comprehensive database of quantitative degradation data mined from existing literature and from novel experiments, to provide new insights into the interrelated factors controlling degradation. Resorbable composites made of biodegradable polyesters and calcium-based ceramics have significant therapeutic potential as tissue engineering scaffolds, as temporary implants and as drug-loaded matrices for controlled release. However, their degradation is complex and the rate of resorption depends on multiple connected factors such as the shape and size of the device, polymer chemistry and molecular weight, particle phase, size, volume fraction, distribution and pH-dependent dissolution properties. Understanding and ultimately predicting the degradation of resorbable composites is of central importance if we are to fully unlock the promise of these materials.
This book presents the proceedings of the 4th International Symposium on Materials and Sustainable Development ISMSD2019 (CIMDD2019), will include a 3-day Conference (12 - 14 November). Organized by the Research Unit: Materials, Processes and Environment and M'hamed Bougara University of Boumerdes (Algeria) in partnership with University of Reims - Champagne-Ardenne (France), this symposium follows the success of CIMDD 2013-2015-2017 and continues the traditions of the highly successful series of International Conferences on the materials, processes and Environment. The Symposium will provide a unique topical forum to share the latest results of the materials and sustainable development research in Algeria and worldwide.
This book provides a comprehensive review of functional nanomaterials for electrochemical applications, presenting interesting examples of nanomaterials with different dimensions and their applications in electrochemical energy storage. It also discusses the synthesis of functional nanomaterials, including quantum dots; one-dimensional, two-dimensional and three-dimensional nanostructures; and advanced nanocomposites. Highlighting recent advances in current electrochemical energy storage hotpots: lithium batteries, lithium-ion batteries, sodium-ion batteries, other metal-ion batteries, halogen ion batteries, and metal-gas batteries, this book will appeal to readers in the various fields of chemistry, material science and engineering.
This textbook explains the physics of phase transformation and associated constraints from a metallurgical or materials science point of view, based on many topics including crystallography, mass transport by diffusion, thermodynamics, heat transfer and related temperature gradients, thermal deformation, and even fracture mechanics. The work presented emphasizes solidification and related analytical models based on heat transfer. This corresponds with the most fundamental physical event of continuous evolution of latent heat of fusion for directional or non-directional liquid-to-solid phase transformation at a specific interface with a certain geometrical shape, such as planar or curved front. Dr. Perez introduces mathematical and engineering approximation schemes for describing the phase transformation, mainly during solidification of pure metals and alloys. Giving clear definitions and explanations of theoretical concepts and full detail of derivation of formulae, this interdisciplinary volume is ideal for graduate and upper-level undergraduate students in applied science, and professionals in the metal making and surface reconstruction industries.
This book not only introduces the chemistry and physicochemical properties of phthalonitrile resins, but also describes strategies for crosslinking and structural modification. The authors explore blends and composites of phthalonitriles with other high-performance polymers and give an outlook on the future of the field.
This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.
To optimize separations, membranes are imprinted with various molecules. The theory and mechanism of the separation as well as strategies for imprinting are explained in this book. Different molecules and applications are summarized such as imprinting of proteins, ions and cyclodextrins as well as sensor based imprinted membranes and drug delivery in context of molecular imprinting.
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
This book introduces readers to the fundamental physics and chemistry of the proton exchange membrane fuel cell (PEMFC), followed by discussions on recent advances in low platinum electrocatalysis and related catalyst development for PEMFC (the book's primary focus), methods of membrane electrode assembly (MEA) fabrication for low platinum catalysts, and durability issues in connection with MEA. While energy and environmental issues are becoming the two main subjects in global sustainable development, the proton exchange membrane fuel cell (PEMFC), a clean and efficient new energy technology, has attracted more and more attention in recent years The major hurdle for more extensive applications of the PEMFC, especially for the automotive sector, is the high platinum loading requirement. Readers will gain a comprehensive understanding of the fundamentals and methods of low platinum PEMFC. This book is intended for researchers, engineers and graduate students in the fields of new energy technology, the fuel cell vehicle industry and fuel cell design.
The field of Corrosion Modelling has evolved tremendously since the first work was published in the early 1980's. Its initial application in the offshore industry has expanded to the point where modelling is applied in practically all application areas and the software has been developed to fulfil these needs. This book presents contributions from the most influential researchers and developers of corrosion modelling tools and users who apply the technology in their industry. Providing an excellent introduction to the state-of-the-art in computer modelling of corrosion and related electrochemical processes, this book will be of value to corrosion engineers and physicists, model developers and researchers.
Advancing the experimental study of superfluids relies on increasingly sophisticated techniques. We develop and demonstrate the loading of Bose-Einstein condensates (BECs) into nearly arbitrary trapping potentials, with a resolution improved by a factor of seven when compared to reported systems. These advanced control techniques have since been adopted by several cold atoms labs around the world. How this BEC system was used to study 2D superfluid dynamics is described. In particular, negative temperature vortex states in a two-dimensional quantum fluid were observed. These states were first predicted by Lars Onsager 70 years ago and have significance to 2D turbulence in quantum and classical fluids, long-range interacting systems, and defect dynamics in high-energy physics. These experiments have established dilute-gas BECs as the prototypical system for the experimental study of point vortices and their nonequilibrium dynamics. We also developed a new approach to superfluid circuitry based on classical acoustic circuits, demonstrating its conceptual and quantitative superiority over previous lumped-element models. This has established foundational principles of superfluid circuitry that will impact the design of future transport experiments and new generation quantum devices, such as atomtronics circuits and superfluid sensors.
Corrosion is a degrading material process frequently encountered in engineering structures and components, which may lead to costly and catastrophic failures if not properly and timely addressed. This volume describes a wide spectrum of experimental and analytical studies, which provide a fairly comprehensive account of corrosion manifestations and methodologies for addressing them in structural and industrial design. As such, it is expected to make a valuable reference publication for engineers and scientists interested in the protection of structures and components from harmful and potentially ruinous corrosive action.The collected articles comprising this volume address issues which can be categorised into two main areas. The first is concerned with material science approaches to corrosion, that is, visual or instrumental means of assessing existing behaviour or effectiveness of corrective measures and techniques. The second part of the volume comprises boundary element simulations of cathodic protection schemes for the purpose of predicting and optimising their performance.A number of practical problems are analysed such as: the coating condition on a ballast tank wall; the impressed current cathodic protection of an offshore platform and minimizing a ship's electric and magnetic signature. Topics covered include: Elemental identification; Material loss; Strain fields; Stress corrosion cracking; Corrosion resistance; Fretting corrosion; Contact surface damage; Electrochemical testing; Coating conditions; Cathodic protection; Current density distribution; Pipelines and deep well casings; Electric and magnetic signatures; Coating damage effects; Galvanic corrosion.
Nanocarbon and Its Composites: Preparation, Properties and Applications provides a detailed and comprehensive review of all major innovations in the field of nanocarbons and their composites, including preparation, properties and applications. Coverage is broad and quite extensive, encouraging future research in carbon-based materials, which are in high demand due to the need to develop more sustainable, recyclable and eco-friendly methods for materials. Chapters are written by eminent scholars and leading experts from around the globe who discuss the properties and applications of carbon-based materials, such as nanotubes (buckytubes), fullerenes, cones, horns, rods, foams, nanodiamonds and carbon black, and much more. Chapters provide cutting-edge, up-to-date research findings on the use of carbon-based materials in different application fields and illustrate how to achieve significant enhancements in physical, chemical, mechanical and thermal properties.
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues.
This book gathers the proceedings of the 4th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM), held in Beijing, China on October 24-25, 2020. The conference brought together researchers from several countries and covered all major areas of mechanical engineering and applied composite materials, new applications and current trends. The topics covered include: structure and design, mechanical manufacturing and automation, robotics and mechatronics, mechanical behavior of nanomaterials, nanocomposites, and composite mechanics. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
Covering the latest technologies, Nanotechnology in eco-efficient construction provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction. The book contains a special focus on applications concerning concrete and cement, as nanotechnology is driving significant development in concrete technologies. The new edition has 14 new chapters, including 3 new parts: Mortars and concrete related applications; Applications for pavements and other structural materials; and Toxicity, safety handling and environmental impacts. Civil engineers requiring an understanding of eco-efficient construction materials, as well as researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry will find this updated reference to be highly valuable.
This book discusses advanced Small Modular Reactors (SMRs) as a way to provide safe, clean, and affordable nuclear power options. The advanced SMRs currently under development in the U.S. represent a variety of sizes, technology options and deployment scenarios. These advanced reactors, envisioned to vary in size from a couple megawatts up to hundreds of megawatts can be used for power generation, process heat, desalination, or other industrial uses. In-depth chapters describe how advanced SMRs offer multiple advantages, such as relatively small size, reduced capital investment, location flexibility, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages. The authors present a thorough examination of the technology and defend methods by which the new generation of nuclear power plants known as GEN-IV can safely be used as an efficient source of renewable energy. Provides a unique and innovative approach to the implementation of Small Modular Reactor as part of GEN-IV technology; Discusses how Small Modular Reactors (SMRs) can deliver a viable alternative to Nuclear Power Plants (NPPs); Presents an argument defending the need for nuclear power plant as a source of energy, its efficiency and cost effectiveness, as well as safety related issues.
|
![]() ![]() You may like...
We Who Wrestle With God - Perceptions Of…
Jordan B. Peterson
Hardcover
Forest and Nature Governance - A…
Bas Arts, Jelle Behagel, …
Hardcover
Method in the Madness - Research Stories…
Keith Townsend, John Burgess
Paperback
R1,548
Discovery Miles 15 480
Index to International Public Opinion…
Elizabeth Hann Hastings, Philip K. Hastings
Hardcover
R2,322
Discovery Miles 23 220
Sustainable Education and Development
Joseph N. Mojekwu, Wellington Thwala, …
Hardcover
R6,333
Discovery Miles 63 330
Semiconductor Lasers - Fundamentals and…
Alexei Baranov, Eric Tournie
Hardcover
R5,924
Discovery Miles 59 240
Intelligent and Evolutionary Systems…
Kittichai Lavangnananda, Somnuk Phon-Amnuaisuk, …
Hardcover
R6,871
Discovery Miles 68 710
|