![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Rotary Kilns-rotating industrial drying ovens-are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This professional reference book will be the first comprehensive book in many years that treats all engineering aspects of rotary kilns, including a thorough grounding in the thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. This new edition contains an updated CFD section with inclusion of recent case studies and in line with recent developments covers pyrolysis processes, torrefaction of biomass, application of rotary kilns in C02 capture and information on using rotary kilns as incinerators for hydrocarbons.
Surface Chemistry of Nanobiomaterials brings together the most recent findings regarding the surface modification of currently used nanomaterials, which is a field that has become increasingly important during the last decade. This book enables the results of current research to reach those who wish to use this knowledge in an applied setting. Leading researchers from around the world present various types of nanobiomaterials, such as quantum dots (QDs), carbon nanotubes, silver nanoparticles, copper oxide, zinc oxide, magnesium oxide, magnetite, hydroxyapatite and graphene, and discuss their related functionalization strategies. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.
Materials for the Direct Restoration of Teeth focuses on the important role teeth play in our lives and how biomaterials scientists are ensuring that new dental materials are functional and esthetic. As research in the field is shifting away from traditional materials like metal, and towards more advanced materials, such as resins and ceramics, this book on the subject of modern materials for the direct repair of teeth provides readers with a comprehensive reference. The most pertinent modern dental materials and their properties and applications for the direct restoration of teeth are presented, along with case examples and guidance notes making this book an essential companion for materials scientists and clinicians.
This monograph is a detailed introduction to the nascent and ever-evolving fields of metamaterials and nanophotonics, with key techniques and applications needed for a comprehensive understanding of these fields all detailed. These include the 'standard' and high-accuracy 'nonstandard' FDTD techniques, finite-difference frequency-domain mode solvers, the transfer matrix method, analytic calculations for dielectric and plasmonic waveguides, dispersion, Maxwell-Bloch and density functional theory, as well as design methods for constructing metamaterials and nanolasers, and quantum plasmonics. The book is intended for final-year undergraduates, as well as postgraduates or active researchers who wish to understand and enter these fields in a 'user-friendly' manner, and who have a basic understanding of and familiarity with electromagnetic theory.
Joint RES and Distribution Network Expansion Planning Under a Demand Response Framework explains the implementation of the algorithms needed for joint expansion planning of distributed generation and distribution network models, discussing how to expand the generation and distribution network by adding renewable generation, demand response, storage units, and new assets (lines and substations) so that the current and future energy supply in islands is served at a minimum cost, and with quality requirements. This book discusses the outcomes of the models discussed, including factors such as the location and size of new generation assets to be installed. It also introduces other issues relevant to the planning of insular distribution systems, including DR and hybrid storage. DR and ESS will play a much more significant role in future expansion planning models, where the present study stresses their relevance, including additional considerations to the planning model.
This Handbook provides insight into the integration of modeling for simulation of manufacturing processing. The metals industry is moving toward an integrated computational materials engineering approach (ICME). This provides engineers with accurate predictions of material and process behavior to avoid or reduce costly trial-by-error and prototyping methods of development. The table of contents illustrates the depth and breadth of the processes addressed. This area of engineering has been advancing rapidly, accruing the benefits of reduced manufacturing costs and improved component design. This book serves as a reference to these developments. Condensed Table of Contents:Input Data for Simulations -Flow Stress Measurements, Thermophysical Properties of Solids and Liquids, Thermophyscial Properties (and Their Determination) for Solidification Models Grain Boundary Energy and Mobility, Crystallographic Texture, 3D Microstructure Representation, Solid Models for Simulation Simulation of Deformation Processes - FEM, Slab, and Upper Bound Methods for Deformation Processes, Forging,Bending and Forming Processes, Simulation and Modeling of Powder Metallurgy Processes, Press and Sinter P/M, Modeling of HIP, M/P Injection Molding, Compaction Modeling, Process Modeling of Higher-Density Consolidation Simulation of Solidification - Computational Analysis of the VAR and ESR Processes, Porosity during Solidification, Simulation of Casting and Solidification Processes, Cellular-automata Models for Solidification Processes, Solidification Heat Transfer Simulations, Simulation of Fluid Flow and Heat/Mass Transfer Modeling of Solidification Microstructures, Transport Phenomena for during Solidification Processes, Microstructure and texture formation during solidification Simulation of Machining Processes - Shearing and Blanking, Orthogonal cutting/chip formation (Includes Simulation of machining residual stresses) Machining Distortion in Nickel-Base Disks Simulation of Joining Operations - Integrated Weld Modeling, Simulation of Joining Operations, Rotational Welding, FSW, Diffusion Bonding, Additive Manufacturing Processes Simulation of Heating and Heat Treatment - Computerized Properties Prediction and Technology Planning in Heat Treatment of Steels, Heating and Heat-Flow Simulation, Quenching, Residual Stress Formation, and Quench Cracking, Stress-Relief, Induction Heating, Surface Treatments, Shot-peening Processes Induction Heat Treatment, Diffusion Coating Techniques Simulation of Phase Diagrams and Transformations - Application of Thermodynamic and Material Property Modeling to Process Simulation of Industrial Alloys, Commercial Alloy Phase Diagrams and Industrial Applications,Quantitative Prediction of Transformation Hardening in Steels Integration of Modeling and Simulation in Design - Design Optimization Methodologies, Propagation of Errors and Managing Uncertainty Glossary Index This Volume joins the companion, Volume 22A, Fundamentals of Modeling for Metals Processing to provide a complete authoritative reference for the modeling practitioner, or the student or engineer beginning their quest for information.
Modeling of Chemical Wear is a one-stop resource for students, researchers and professionals seeking quick and effective tribological evaluations of environmentally friendly and energy efficient products. This book considers optimizing additive combinations by proper methodology, bridging the gap between theory and practice. It defines effective approaches to evaluate antiwear chemical additives commonly used in industry, enhancing the mapping ability of their performance to reduce the extent of full scale evaluations.
Flaws are the principal source of fracture in many materials, whether brittle or ductile, whether nearly homogeneous or composite. They are introduced during either fabrication or surface preparation or during exposure to aggressive environments (e. g. oxidation, shocks). The critical flaws act as stress concentrators and initiate cracks that propagate instantaneously to failure in the absence of crack arrest phenomena as encountered in brittle materials. This book explores those brittle materials susceptible to crack arrest and the flaws which initiate crack induced damage. A detailed description of microstructural features covering numerous brittle materials, including ceramics, glass, concrete, metals, polymers and ceramic fibers to help you develop your knowledge of material fracture. Brittle Failure and Damage of Brittle Materials and Composites outlines the technological progress in this field and the need for reliable systems with high performances to help you advance the development of new structural materials, creating advantages of low density, high resistance to elevated temperatures and aggressive environments, and good mechanical properties.
Steel Corrosion Induced Concrete Cracking presents the latest advances in the origin, mechanism and development of corrosion-induced cracking in concrete. It investigates topics including expansion coefficient and elastic modulus of steel corrosion, rust layer and rust distribution, spatial distribution of corrosion products, the shape of corrosion-induced cracks and so on. This book concludes by proposing an improved corrosion-induced cracking model, which considers the phenomena of the simultaneous occurrence of corrosion layer accumulation and corrosion filling in concrete. This book will be a valuable reference book for researchers and graduate students in the field of concrete durability and concrete structure, and industry engineers who are concerned with the deterioration mechanisms and the life cycle of reinforced concrete structures.
Multilayer Flexible Packaging, Second Edition, provides a thorough introduction to the manufacturing and applications of flexible plastic films, covering materials, hardware and processes, and multilayer film designs and applications. The book gives engineers and technicians a better understanding of the capability and limitations of multilayer flexible films and how to use them to make effective packaging. It includes contributions from world renowned experts and is fully updated to reflect the rapid advances made in the field since 2009, also including an entirely new chapter on the use of bio-based polymers in flexible packaging. The result is a practical, but detailed reference for polymeric flexible packaging professionals, including product developers, process engineers, and technical service representatives. The materials coverage includes detailed sections on polyethylene, polypropylene, and additives. The dies used to produce multilayer films are explored in the hardware section, and the process engineering of film manufacture is explained, with a particular focus on meeting specifications and targets. In addition, a new chapter has been added on regulations for food packaging - including both FDA and EU regulations.
Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to further advance biomedical applications. SiC devices offer high power densities and low energy losses, enabling lighter, more compact, and higher efficiency products for biocompatible and long-term in vivo applications, including heart stent coatings, bone implant scaffolds, neurological implants and sensors, glucose sensors, brain-machine-interface devices, smart bone implants, and organ implants. This book provides the materials and biomedical engineering communities with a seminal reference book on SiC for developing technology, and is a resource for practitioners eager to identify and implement advanced engineering solutions to their everyday medical problems for which they currently lack long-term, cost-effective solutions.
Biotransformation of Agricultural Waste and By-Products in the 4F Economy: The Food, Feed, Fiber, Fuel (4F) Economy presents an evaluation of plant species better exploitable for a particular transformation. As crops are already covering large parts of cultivable soils, is it is not conceivable to try to extend the cultures beyond the limit of available soils, but a further increase in productivity is not easy to obtain. The book discusses advances in technology and plants design which support the exploitation and valorization of vegetable and fruit by-products through fermentation (feed-batch liquid fermentation, solid-state fermentation) in bio-based bio-chemicals/biofuels production. Pathways in the biosynthesis of fibers, sugars, and metabolites are provided with a focus on the lifecycle of bacteria, yeasts, and even plant species. The text analyzes cellular structures and the organization of cell walls in order to show which polysaccharides offer more favorable fermentative processes and which are detrimental.
Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications presents a unique collection of up-to-date polymeric nanomaterial membranes. The book offers a perfect source to document state-of-the-art developments and innovations in nanocomposite membranes, ranging from materials development and characterization of properties to membrane applications. The book discusses applications that encompass the enhancement of sorption and degradation processes and their usage for the removal of different pollutants, including heavy metals, dyes, pesticides, and other organic and inorganic pollutants from the industry.
Insights from Imaging in Bioinorganic Chemistry continues a long-running series that describes recent advances in scientific research, in particular, in the field of inorganic chemistry. Several highly regarded experts, mostly from academe, contribute on specific topics. The series editor chooses a sub-field within inorganic chemistry as the theme and focus of the volume, extending invitations to experts for their contributions; the current theme is insights from metal ion imaging in bioinorganic and medicinal chemistry.
Biomaterials Nanoarchitectonics, written from the perspectives of authors form NIMS and other researchers worldwide, provides readers with an explanation of the theory and techniques of nanoarchitectonics, exploring its applications in biomedical fields, including regenerative medicine, drug delivery, and diagnostic and treatment systems based on pathogenic mechanisms. The book also explains the use of nanomaterials that enable 'materials therapy', in which the materials themselves elicit a sustainable, curative effect from living tissue.
Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques - almost all used in materials science - are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry.
Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, Second Edition, provides readers with tactics they can use to optimally select materials to satisfy complex design problems when they are faced with the vast range of materials available. Current approaches to materials selection range from the use of intuition and experience, to more formalized computer-based methods, such as electronic databases with search engines to facilitate the materials selection process. Recently, multi-criteria decision-making (MCDM) methods have been applied to materials selection, demonstrating significant capability for tackling complex design problems. This book describes the rapidly growing field of MCDM and its application to materials selection. It aids readers in producing successful designs by improving the decision-making process. This new edition updates and expands previous key topics, including new chapters on materials selection in the context of design problem-solving and multiple objective decision-making, also presenting a significant amount of additional case studies that will aid in the learning process.
Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application. This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials. The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world.
New Materials for Catalytic Applications proposes the use of both new and existing materials for catalytic applications, such as zeolites, metal oxides, microporous and mesoporous materials, and monocrystals. In addition, metal-oxides are discussed from a new perspective, i.e. nano- and photocatalytic applications. The material presents these concepts with a new focus on strategies in synthesis, synthesis based on a rational design, the correlation between basic properties/potential applications, and new catalytic solutions for acid-base, redox, hydrogenation, photocatalytic reactions, etc.
Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance provides a detailed review of lightweight composite materials and structures and discusses their use in the transport industry, specifically surface and air transport. The book covers materials selection, the properties and performance of materials, and structures, design solutions, and manufacturing techniques. A broad range of different material classes is reviewed with emphasis on advanced materials. Chapters in the first two parts of the book consider the lightweight philosophy and current developments in manufacturing techniques for lightweight composite structures in the transport industry, with subsequent chapters in parts three to five discussing structural optimization and analysis, properties, and performance of lightweight composite structures, durability, damage tolerance and structural integrity. Final chapters present case studies on lightweight composite design for transport structures.
Advanced Fibrous Composite Materials for Ballistic Protection provides the latest information on ballistic protection, a topic that remains an important issue in modern times due to ever increasing threats coming from regional conflicts, terrorism, and anti-social behavior. The basic requirements for ballistic protection equipment are first and foremost, the prevention of a projectile from perforating, the reduction of blunt trauma to the human body caused by ballistic impact, the necessity that they are thermal and provide moisture comfort, and that they are lightweight and flexible to guarantee wearer's mobility. The main aim of this book is to present some of the most recent developments in the design and engineering of woven fabrics and their use as layering materials to form composite structures for ballistic personal protection. Chapter topics include High Performance Ballistic Fibres, Ultra-High Molecular Weight Polyethylene (UHMWPE), Ballistic Damage of Hybrid Composite Materials, Analysis of Ballistic Fabrics and Layered Composite Materials, and Multi-Scale Modeling of Polymeric Composite Materials for Ballistic Protection.
Special Injection Molding Techniques covers several techniques used to create multicomponent products, hollow areas, and hard-soft combinations that cannot be produced with standard injection molding processes. It also includes information on the processing techniques of special materials, including foaming agents, bio-based materials, and thermosets. The book describes the most industrially relevant special injection molding techniques, with a detailed focus on understanding the basics of each technique and its main mechanisms, i.e., temperature, mold filling, bonding, residual stresses, and material behavior, also providing an explanation of process routes and their variants, and discussions of the most influencing process parameters. As special molding technologies have the potential to transform plastics processing to a highly-efficient, integrated type of manufacturing, this book provides a timely survey of these technologies, putting them into context, accentuating new opportunities, and giving relevant information on processing. |
You may like...
Cardiovascular Computing-Methodologies…
Spyretta Golemati, Konstantina S. Nikita
Hardcover
R2,702
Discovery Miles 27 020
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Cosine-/Sine-Modulated Filter Banks…
Vladimir Britanak, K.R. Rao
Hardcover
R5,328
Discovery Miles 53 280
Kernel Learning Algorithms for Face…
Jun-Bao Li, Shu-Chuan Chu, …
Hardcover
R4,309
Discovery Miles 43 090
Automatic Extraction of Man-Made Objects…
Armin Gruen, E.P. Baltsavias, …
Hardcover
R5,362
Discovery Miles 53 620
Spatial Polarization Characteristics of…
Huanyao Dai, Xuesong Wang, …
Hardcover
R4,638
Discovery Miles 46 380
High Efficiency Video Coding (HEVC…
Vivienne Sze, Madhukar Budagavi, …
Hardcover
R4,331
Discovery Miles 43 310
|