![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
This handbook, now in its second edition, is the only comprehensive reference available on the subject of antiblocking, release, and slip additives, which are of high industrial importance. These additives are used to alter the properties and performance of polymers, and improve the efficiency and cost of processing methods. These characteristics make additives an important topic across the spectrum of industry sectors that employ plastics and polymers. Topics covered include: Types and concentrations, Effect on polymer and/or other additives, and Typical formulations. Information on use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations. Processing methods are discussed using the following breakdown: Types and concentrations, Effect on process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations. A complete analysis of literature and patents available from the first use of these additives until now is included in the book. Wypych considers all essential aspects of chemistry, physical
properties, influence on properties of final products,
formulations, methods of incorporation, analysis, and effects on
health and environment. The book comprises 18 chapters, each
addressing specific aspect of properties and applications of
antiblocking, release, and slip agents. * The only available reference on antiblocking, slip, and release additives * A comprehensive information source, with numerous references provided as a starting point for further investigation * Evaluation of additives that can help speed up processes, improve product quality, and reduce waste
This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.
This book includes papers on recent research carried out in the field of metal-matrix composites (MMCs). Processing, microstructure, and mechanical properties of MMCs and unreinforced matrix alloys will be covered with a focus on aluminum, titanium, nickel, and copper MMCs. Those involved in the research of MMCs and unreinforced alloys, particularly in aerospace, space, and automotive materials research, will find this volume indispensible.
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.
This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.
The book introduces 'the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and dimensions of the ablated micro- and nano-structures are performed. The validity and required refinement of different models in different experimental conditions is provided. The pulsed laser deposition process which bases on collecting the ablated particles on a surface is analyzed in terms of efficiency and quality of the deposited films as a function of ambient conditions, target material, laser parameters and substrate characteristics. The interaction between the incident laser and the ablation plasma is analyzed with respect to its influence on the structures of the deposited films and its capacity to generate high harmonics and single attosecond pulses which are highly desirable in pump-probe experiments.
In this thesis, Till Cremer investigates the bulk properties of ionic liquids (IL), the IL/vacuum interface and the IL/solid interface. For these studies the author primarily uses angle-resolved X-ray photoelectron spectroscopy under ultrahigh vacuum conditions. ILs represent a class of materials with unique physico-chemical properties. Many applications take advantage of the extremely low vapor pressure of aprotic ILs to fabricate permanent, non-volatile liquid coatings on solid materials. The author focuses on issues related to thin IL coatings, in particular concerning new catalytic concepts such as the supported ionic liquid phase (SILP) and solid catalyst with ionic liquid layer (SCILL) systems. Till Cremer presents a number of fundamental contributions to the new field of "Ionic Liquid Surface and Interface Science". Highlights are his results concerning anion/cation-interactions and the growth of ultrathin layers of ionic liquids on various substrates in the context of supported ionic liquid catalysis. His results have significantly contributed to the present level of understanding in the field and accordingly he is author and coauthor of ten publications on the topic in high-ranked journals.
This book presents a hybrid approach to the mechanics of thin
bodies. Classical theories of rods, plates and shells with
constrained shear are based on asymptotic splitting of the
equations and boundary conditions of three-dimensional elasticity.
The asymptotic solutions become accurate as the thickness
decreases, and the three-dimensional fields of stresses and
displacements can be determined. The analysis includes practically
important effects of electromechanical coupling and material
inhomogeneity. The extension to the geometrically nonlinear range
uses the direct approach based on the principle of virtual work.
Vibrations and buckling of pre-stressed structures are studied with
the help of linearized incremental formulations, and direct tensor
calculus rounds out the list of analytical techniques used
throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book.
This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction; as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines-mechanical, civil, chemical, and electrical-apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials.
Contents - 1. The Free Atom- The contribution of spectroscopy - The Rutherford-Bohr model of the atom - Modern quantum theory - The Pauli exclusion principle - The periodic system - Isotopes - 2. The Bound Atom - Band structure - The attractive and repulsive forces in binding - Stable electron configurations - Ionic bonding - Covalent bonding - Van der Waals' forces - The metallic bond - Implications of the type of bond on the structure of elements - Implications on conductivity - 3. Constitution - Crystallographic principles - The unit cell - The face centred cubic lattice - The close-packed hexagonal lattice. The body-centred cubic lattice - Twin crystals - The rhombohedral lattice - The tetragonal lattice - The structure of compounds - The silicate structure - Glasses - Carbon compounds - 4. Imperfections in Crystals - The surface - Vacant lattice sites - Interstitial atoms - Line and plane defects - Dislocations - Dislocation climb - Dislocation jogs - Imperfect dislocations - Sessile dislocations - Frank-Read sources - 5. The Vibration of Atoms and their Thermal Properties - The lattice vibration - Specific heat - Thermal expansion - Melting - Anisotropy - Thermal conductivity of insulators - Thermal shock - Thermal conductivity of good conductors - 6. Electrical, Magnetic, and Optical Properties - Electrical conductivity - Ionic conductivity - Semiconductors - Thermoelectric effects - Magnetic properties - Ferromagnetism - Antiferromagnetism and ferrimagnetism - Dielectrics - Optical properties - Other electromagnetic radiations - 7. Mechanical Properties - General aspects - Electricity - Plasticity - Resolved shear stress - The role of dislocations in plastic flow - The effect of temperature - Fracture - Creep - Fatigue - Thermal cycling - 8. Metals and Alloys - Properties of pure metals - Compatibility - Interstitial solid solution - Substitutional solid solution - Intermetallic compounds - Equilibrium and non-equilibrium - The properties of alloys - Precipitation in alloys - Complex alloys - 9. Non-metallic Materials - General - Timber - Stone, concrete, and asphalt - Plastics - Ceramics and glasses - Cermets - 10. Service Factors - General - Heterogeneity - Residual stresses - Corrosion - Radiation damage - Conclusion - Further Reading - Author Index - Subject Index - Preface - This book attempts to provide the broad background, to illustrate the basic reasons for the properties of elements, and to explain the consequences of chemical combination, alloying, and mixing. Most previous books have touched only lightly on the atom itself, but my experience in teaching engineers in the University of Manchester suggests that a greater depth of approach is welcome, perhaps because it can account for so much of the subsequent behaviour of metals.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). This book, in particular, focuses on characterizing materials using novel techniques. It covers a variety of advanced materials, viz. composites, coatings, nanomaterials, materials for fuel cells, biomaterials among others. The book also discusses advanced characterization techniques like X-ray photoelectron, UV spectroscopy, scanning electron, atomic power, transmission electron and laser confocal scanning fluorescence microscopy, and gel electrophoresis chromatography. This book gives the readers an insight into advanced material processes and characterizations with special emphasis on nanotechnology.
This thesis presents first observations of superconductivity in one- or two-atomic-scale thin layer materials. The thesis begins with a historical overview of superconductivity and the electronic structure of two-dimensional materials, and mentions that these key ingredients lead to the possibility of the two-dimensional superconductor with high phase-transition temperature and critical magnetic field. Thereafter, the thesis moves its focus onto the implemented experiments, in which mainly two different materials thallium-deposited silicon surfaces and metal-intercalated bilayer graphenes, are used. The study of the first material is the first experimental demonstration of both a gigantic Rashba effect and superconductivity in the materials supposed to be superconductors without spatial inversion symmetry. The study of the latter material is relevant to superconductivity in a bilayer graphene, which was a big experimental challenge for a decade, and has been first achieved by the author. The description of the generic and innovative measurement technique, highly effective in probing electric resistivity of ultra-thin materials unstable in an ambient environment, makes this thesis a valuable source for researchers not only in surface physics but also in nano-materials science and other condensed-matter physics.
In this thesis, real-time evolution of the nanopore channel growth and self-ordering process in anodic nanoporous alumina are simulated on the basis of an established kinetics model. The simulation results were in accordance with the experiments on the (i) growth sustainability of pore channels guided by pre-patterns; and (ii) substrate grain orientation dependence on self-ordering. In addition, a new fabrication method for the rapid synthesis of highly self-ordered nanoporous alumina is established, based on a systematic search for the self-ordering conditions in experiments. Lastly, it reports on a novel surface-charge induced strain in nanoporous alumina-aluminium foils, which indicates that nanoporous alumina can be used as a new type of actuating material in micro-actuator applications.
This monograph presents the latest results related to bio-mechanical systems and materials. The bio-mechanical systems with which his book is concerned are prostheses, implants, medical operation robots and muscular re-training systems. To characterize and design such systems, a multi-disciplinary approach is required which involves the classical disciplines of mechanical/materials engineering and biology and medicine. The challenge in such an approach is that views, concepts or even language are sometimes different from discipline to discipline and the interaction and communication of the scientists must be first developed and adjusted. Within the context of materials' science, the book covers the interaction of materials with mechanical systems, their description as a mechanical system or their mechanical properties.
Back Cover Text: This book addresses the study of the gaseous state of granular matter in the conditions of rapid flow caused by a violent and sustained excitation. In this regime, grains only touch each other during collisions and hence, kinetic theory is a very useful tool to study granular flows. The main difference with respect to ordinary or molecular fluids is that grains are macroscopic and so, their collisions are inelastic. Given the interest in the effects of collisional dissipation on granular media under rapid flow conditions, the emphasis of this book is on an idealized model (smooth inelastic hard spheres) that isolates this effect from other important properties of granular systems. In this simple model, the inelasticity of collisions is only accounted for by a (positive) constant coefficient of normal restitution. The author of this monograph uses a kinetic theory description (which can be considered as a mesoscopic description between statistical mechanics and hydrodynamics) to study granular flows from a microscopic point of view. In particular, the inelastic version of the Boltzmann and Enskog kinetic equations is the starting point of the analysis. Conventional methods such as Chapman-Enskog expansion, Grad's moment method and/or kinetic models are generalized to dissipative systems to get the forms of the transport coefficients and hydrodynamics. The knowledge of granular hydrodynamics opens up the possibility of understanding interesting problems such as the spontaneous formation of density clusters and velocity vortices in freely cooling flows and/or the lack of energy equipartition in granular mixtures. Some of the topics covered in this monograph include: Navier-Stokes transport coefficients for granular gases at moderate densities Long-wavelength instability in freely cooling flows Non-Newtonian transport properties in granular shear flows Energy nonequipartition in freely cooling granular mixtures Diffusion in strongly sheared granular mixtures Exact solutions to the Boltzmann equation for inelastic Maxwell models
This book focuses on polymer insulation as applied to HVDC transmission. It addresses both fundamental principles and engineering practice, with more weight placed on the latter. This is achieved by providing in-depth studies on a number of major topics such as DC insulation structure, DC insulation design, nanocomposites, modification, testing and performance evaluation. In turn, several typical HVDC insulation application cases are examined in detail, e.g. cables, cable accessories, GIS/GIL, and converter transformers. A comprehensive and systematic study on polymer insulation modification and ageing assessment is one of the book's major features, making it particularly well suited for readers who are interested in learning about polymer insulation materials. Given its scope, it offers a valuable resource for researchers, engineers and graduate students in the fields of high-voltage and insulation technologies, electrical engineering, material engineering, etc.
This book presents a collection of studies on state-of-art techniques for converting biomass to chemical products by means of pyrolysis, which are widely applicable to the valorization of biomass. In addition to discussing the fundamentals and mechanisms for producing bio-oils, chemicals, gases and biochar using pyrolysis, it outlines key reaction parameters and reactor configurations for various types of biomass. Written by leading experts and providing a broad range of perspectives on cutting-edge applications, the book is a comprehensive reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels, and environmental engineering, and a valuable resource for university students in the fields of chemical engineering, material science and environmental engineering.
The book "Nanocosmetics and nanomedicines: new approaches for skin care" contains a summary of the most important nanocarriers for skin delivery. Although "nanocosmetics" is a subject widely commented in the academy and the beauty industry, a book covering the skin care treatments using nanotechnological approaches with cosmetics and nanomedicines is still missing, therefore the need for this publication. This book is divided in three parts: The first one (Part A) is devoted to a brief review on the main topics related to the skin delivery and to the introduction of the subject "nanocosmetics". The second part (Part B) presents different types of nanocarriers applied as skin delivery systems for cosmetics or drugs. The last part (Part C) shows a wide range of applications of nanotechnology on the skin care area as well as on dermatocosmetic and dermatological fields.
"Morphology Genetic Materials Templated from Nature Species" provides a comprehensive and up-to-date coverage of research on bio-inspired functional materials including materials science and engineering aspects of the fabrication, properties, and applications. The book discusses bio-inspired strategies integrating biotemplate, biomineralization, and biomimesis in nature, which are adopted to fabricate functional materials with hierarchical bio-architectures and interrelated outstanding performances, as well as valuable applications in photoelectricity, photonics, photocatalysis, chemical detection, bio-imaging, and photoelectron transfer components/devices. The book is intended for researchers and graduate students in the fields of materials science, chemistry, nanotechnology, semiconductor, biotechnology, environmental engineering, etc. Prof. Dr. Di Zhang is currently a professor at the School of Materials Science and Engineering, Shanghai Jiao Tong University, and the director of the State Key Laboratory of Metal Matrix Composites, China. "
This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter-and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.
Electrocatalysts are the heart of power devices where electricity is produced via conversion of chemical into electrical energy. - pressive advances in surface science techniques and in first pr- ciples computational design are providing new avenues for signi- cant improvement of the overall efficiencies of such power dev- es, especially because of an increase in the understanding of el- trocatalytic materials and processes. For example, the devel- ment of high resolution instrumentation including various electron and ion-scattering and in-situ synchrotron spectroscopies, elect- chemical scanning tunneling microscopy, and a plethora of new developments in analytical chemistry and electrochemical te- niques, permits the detailed characterization of atomic distribution, before, during, and after a reaction takes place, giving unpre- dented information about the status of the catalyst during the re- tion, and most importantly the time evolution of the exposed ca- lytic surfaces at the atomistic level. These techniques are c- plemented by the use of ab initio methods which do not require input from experimental information, and are based on numerical solutions of the time-independent Schrodinger equation including electron-electron and electron-atom interactions. These fir- principles computational methods have reached a degree of - turity such that their use to provide guidelines for interpretation of experiments and for materials design has become a routine practice in academic and industrial communities.
In-situ scattering and diffraction measurements using synchrotron and neutron beam lines have become a viable tool to look at the non-equilibrium processing of advanced materials. This volume presents the subject from the theoretical and experimental standpoint, in order to provide a closer insight into the different synchrotron and neutron diffraction techniques as well as innovative microscopy techniques. It addresses the following items: - Phase detection and quantification - In-situ welding experiments - Stress/strain build-up - Model development and Simulation - Analysis tools and programming |
![]() ![]() You may like...
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,710
Discovery Miles 57 100
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R5,044
Discovery Miles 50 440
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,423
Discovery Miles 24 230
Electrical Properties of Materials
Laszlo Solymar, Donald Walsh, …
Hardcover
R4,626
Discovery Miles 46 260
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R5,042
Discovery Miles 50 420
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,711
Discovery Miles 57 110
Nanoscale Materials in Chemistry…
Larry Erikson, Ranjit Koodali, …
Hardcover
R5,699
Discovery Miles 56 990
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,666
Discovery Miles 26 660
|