Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.
This book provides a modern introduction to the growth, characterization, and physics of iron-based superconducting thin films. Iron pnictide and iron chalcogenide compounds have become intensively studied key materials in condensed matter physics due to their potential for high temperature superconductivity. With maximum critical temperatures of around 60 K, the new superconductors rank first after the celebrated cuprates, and the latest announcements on ultrathin films promise even more. Thin film synthesis of these superconductors began in 2008 immediately after their discovery, and this growing research area has seen remarkable progress up to the present day, especially with regard to the iron chalcogenides FeSe and FeSe1-xTex, the iron pnictide BaFe2-xCoxAs2 and iron-oxyarsenides. This essential volume provides comprehensive, state-of-the-art coverage of iron-based superconducting thin films in topical chapters with detailed information on thin film synthesis and growth, analytical film characterization, interfaces, and various aspects on physics and materials properties. Current efforts towards technological applications and functional films are outlined and discussed. The development and latest results for monolayer FeSe films are also presented. This book serves as a key reference for students, lecturers, industry engineers, and academic researchers who would like to gain an overview of this complex and growing research area.
This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.
Part I provides the essential classical and quantum laws on which the correlation between properties and structures of materials is explained. It covers the traditional engineering materials, metals and alloys, semiconductors, polymers, dielectrics, amorphous solids, superconductors and materials for magnetic, nuclear, space and laser applications. The recent discovery of carbon nanotubes (CNT) has led to nanotechnology and exciting applications in biology, medicine, textiles, energy, transportation and electronic devices. An update to this edition as Part II of the book is the physical description of CNT, the method of their production, the classical and quantum aspects of their properties and the way these differ from the three-dimensional materials discussed in Part I. The author accounts for the difference in properties like electrical and thermal conduction in copper and carbon nanotubes on models that differ due to dimensionality of the material.
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
In this thesis, the author investigates hidden-order phase transition at" T"0 = 17.5 K in the heavy-fermion URu2Si2. The four-fold rotational symmetry breaking in the hidden order phase, which imposes a strong constraint on the theoretical model, is observed through the magnetic torque measurement. The translationally invariant phase with broken rotational symmetry is interpreted as meaning that the hidden-order phase is an electronic "nematic" phase. The observation of such nematicity in URu2Si2 indicates a ubiquitous nature among the strongly correlated electron systems. The author also studies the superconducting state of URu2Si2 below" T"c = 1.4 K, which coexists with the hidden-order phase. A peculiar vortex penetration in the superconducting state is found, which may be related to the rotational symmetry breaking in the hidden-order phase. The author also identifies a vortex lattice melting transition. This transport study provides essential clues to the underlying issue of quasiparticle dynamics as to whether a quasiparticle Bloch state is realized in the periodic vortex lattice.
This thesis addresses the introduction of redox mediator into lithium-oxygen batteries to improve their electrochemical performance especially in terms of practical energy density and round-trip efficiency. In chapter 1, basic electrochemistry regarding lithium-oxygen batteries and redox mediators are introduced. In chapter 2 to 4, comprehensive researches including the discovery of a new redox mediator inspired by biological system, the investigation on kinetic property of redox mediator, and the prevention of shuttle phenomenon are introduced, followed by chapter 5 summarizing the contents. This thesis is targeted to students and researchers interested in electrochemistry and energy storage systems.
Situated at the forefront of interdisciplinary research on ferromagnetic microwires and their multifunctional composites, this book starts with a comprehensive treatment of the processing, structure, properties and applications of magnetic microwires. Special emphasis is placed on the giant magnetoimpedance (GMI) effect, which forms the basis for developing high-performance magnetic sensors. After defining the key criteria for selecting microwires for various types of GMI sensors, the book illustrates how ferromagnetic microwires are employed as functional fillers to create a new class of composite materials with multiple functionalities for sensing and microwave applications. Readers are introduced to state-of-the-art fabrication methods, microwave tunable properties, microwave absorption and shielding behaviours, as well as the metamaterial characteristics of these newly developed ferromagnetic microwire composites. Lastly, potential engineering applications are proposed so as to highlight the most promising perspectives, current challenges and possible solutions.
This thesis focuses on the transport and magneto-transport properties of graphene p-n-p junctions, such as the pronounced quantum Hall effect, a well-defined plateau-plateau transition point, and scaling behavior. In addition, it demonstrates persistent photoconductivity (PPC) in the monolayer MoS2 devices, an effect that can be attributed to random localized potential fluctuations in the devices. Further, it studies scaling behavior at zeroth Landau level and high performance of fractional values of quantum Hall plateaus in these graphene p-n-p devices. Moreover, it demonstrates a unique and efficient means of controlling the PPC effect in monolayer MoS2. This PPC effect may offer novel functionalities for MoS2-based optoelectronic applications in the future.
This book covers several aspects of the synthesis of composites by the pressureless infiltration technique. It describes the methods used to obtain green preforms, such as cold pressed and hot sintering, describing the heating time, load, and time required for pressing the preforms. Additionally, wettability phenomena, which is directly related on infiltration, is extensively described. Wettability process and interfacial reactions are analyzed in many ceramic-metal systems prior to fabricate the composites. A complete description of fabrication processes for Metal Matrix Composites is included. An extensive section on structural, chemical, and mechanical characterization of composites fabricated with aluminum and magnesium alloys as matrices reinforced with titanium carbide (TiC), aluminum nitride (AlN), silicon carbide (SiC) and alumina (Al2O3) is included. Relevant techniques for joining composites, such as welding and brazing are addressed. As well as issues pertaining to the corrosion and wear of composites are discussed as well. Corrosion behavior of some composites exposed to aqueous media was analyzed. Corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx and Al-Cu-Li alloys like matrix is discussed extensively. The structural characterization techniques addressed include: scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), optical microscopy (OM), differential thermal analysis (DTA), high resolution transmission electron microscopy (HRTEM), and thermogravimetry analysis (TGA). Mechanical testing including hardness, elastic modulus, tension tests, and impact tests were used in the characterization of composites. Theoretical models for prediction of some mechanical properties are included too.
This collection from the 12th International Conference on Magnesium Alloys and Their Applications (Mg 2021)-the longest running conference dedicated to the development of magnesium alloys-covers the breadth of magnesium research and development, from primary production to applications to end-of-life management. Authors from academia, government, and industry discuss new developments in magnesium alloys and share valuable insights. Topics in this volume include but are not limited to the following: Primary production Alloy development Solidification and casting processes Forming and thermo-mechanical processing Other manufacturing process development (including joining and additive manufacturing) Corrosion and protection Modeling and simulation Structural, functional, biomedical, and energy applications Advanced characterization and fundamental theories Recycling and environmental issues
This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies. This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.
This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: * Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification * Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events * Links the performance of a sensor to the various governing physical and chemical principles so readers can fully understand how a biosensor with nanoscale modified electrode surface functions.
This book identifies novel advanced materials that can be utilized as protective agents for the preservation of stone. The innovative solutions to stone conservation presented here result in increased sustainability, reduced environmental impact, and increased social and economic benefits. It provides an overview of recent trends and progress in advanced materials applied to stone protection. It also explores the scientific principles behind these advanced materials and discusses their applications to diff erent types of stone preservation efforts. Essential information as well as knowledge on the availability and applicability of advanced nanostructured materials is also provided, with focus placed on the practical aspects of stone protection. Th e book highlights an interdisciplinary eff ort regarding novel applications of nanostructured materials in the advancement of stone protection. It provides insight towards forthcoming developments in the fi eld. Advanced nanostructured materials are designed and developed with the aim of being chemically, physically, and mechanically compatible with stone. Advanced materials for stone conservation that are characterized by several functional properties are considered in this book. These include the physico-chemical, protective, and morphological properties, eco-toxicity, and mechanisms of degradation. The authors present a thorough overview of cutting-edge discoveries, detailed information on recent technological developments, breakthroughs in novel nanomaterials, utilization strategies for applications in cultural heritage, and the current status and future outlook of the topic to address a wide range of scientific communities.
This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of energy conversion and storage materials, thermoelectric materials and devices, nuclear materials, solar energy materials and solar cells, minerals and oil and gas materials, photocatalytic materials for energy production, eco-materials, and environmental engineering materials. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.
This thesis focuses on porous monolithic materials that are not in the forms of particles, fibers, or films. In particular, the synthetic strategy of porous monolithic materials via the sol-gel method accompanied by phase separation, which is characterized as the non-templating method for tailoring well-defined macropores, is described from the basics to actual synthesis. Porous materials are attracting more and more attention in various fields such as electronics, energy storage, catalysis, sensing, adsorbents, biomedical science, and separation science. To date, many efforts have been made to synthesize porous materials in various chemical compositions-organics, inorganics including metals, glasses and ceramics, and organic-inorganic hybrids. Also demonstrated in this thesis are the potential applications of synthesized porous monolithic materials to separation media as well as to electrodes for electric double-layer capacitors (EDLCs) and Li-ion batteries (LIBs). This work is ideal for graduate students in materials science and is also useful to engineers or scientists seeking basic knowledge of porous monolithic materials.
The monograph is devoted to the investigation of physical processes that govern the phonon transport in bulk and nanoscale single-crystal samples of cubic symmetry. Special emphasis is given to the study of phonon focusing in cubic crystals and its influence on the boundary scattering and lattice thermal conductivity of bulk materials and nanostructures.
This follow-up to the first volume presents an integrated survey of the most recent research, engineering development and commercial application of amorphous and microcrystalline semiconductor devices, with emphasis on materials properties and their relationship to performance. A complete guide to the past, present and future of these devices, and a reference on the state-of-the-art of amorphous and microcrystalline devices in modern large-area microelectronics.
Magnetic impurities in a non-magnetic host metal have been actively explored in condensed matter physics in recent last decades. From both fundamental and applied viewpoints these systems are very interesting because they can exhibit strong electronic correlations that give rise to various fascinating phenomena beyond the single particle picture. Up to now our understanding of the underlying processes remains limited due to difficulties involved in measuring these systems on a microscopic scale. With their unique control, scanning tunneling microscopy (STM) and spectroscopy (STS) allow for the first time investigations of phenomena occurring on very small length and energy scales. Here, single magnetic iron and cobalt atoms embedded beneath a metal surface are investigated using these techniques. In particular, the transition from single impurity Kondo physics to two interacting impurities is studied in real space. This thesis contains a comprehensive description of the STM /STS technique, sub-surface impurities, as well as single- and two-impurity Kondo physics - and as such offers a valuable introduction to newcomers to the field.
The operation of everything in the universe needs a special "material"-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth's energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed. |
You may like...
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,424
Discovery Miles 54 240
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|