![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Mid-Infrared Fibre Photonics: Glass Materials, Fibre Fabrication and Processing, Laser Sources and Devicess combines the latest glass chemistry, fibre fabrication and post processing techniques to provide a comprehensive reference on the fundamental science and latest research in fibre photonics for the mid-infrared range. The book systematically reviews the key glass materials systems including fluorides, chalcogenides, and oxides. Each materials chapter includes discussion of composition, structure, thermal, optical and mechanical properties, extrinsic and intrinsic loss mechanisms, materials preparation and purification techniques. Then Mid-Infrared Fibre Photonics: Glass Materials, Fibre Fabrication and Processing, Laser Sources and Devicess covers the most relevant fabrication, post-processing, and spectroscopy techniques. Fibre sources are also addressed including fibre sources for continuous wave emission, pulsed emission, and broadband emission. The book concludes with a brief overview of important medical, sensing and defence applications.
Nanocarriers for the Delivery of Combination Drugs focuses on the role of nanocarriers in the delivery of combination drugs for the management and treatment of various diseases. Nanocarriers belonging to the category of polymeric nanoparticles, dendrimers, lipidic nanocarriers (like nanoemulsions), liposomes, solid lipid nanoparticles, nanostructured lipid carriers are now being used in the drug delivery of combination drugs. This book helps readers assimilate all the information available surrounding the application of various nanocarrier technologies for the delivery of combination drugs of synthetic and natural origin, including small and large molecules. This is an important reference source for pharmaceutical scientists and biomaterials scientists who are looking to gain an increased understanding on how nanotechnology is improving the efficiency of combination drug delivery.
Quantum dots (QDs) are hybrid organic/inorganic nanoparticles with novel physical properties. QDs have two components: an inorganic core and an optically active coated shell. Moreover, surface coatings can be applied to QDs to modify the particle as needed for experiments. Hydrophilic coatings prevent leaking of metal cargo from the core, enhancing the solubility in biological contexts and bind molecules, such as receptor-ligands, antibodies, therapeutic, and diagnostic macromolecules for enhanced effects. Their high surface-to-volume ratio allows multiple functional groups to attach onto the surface of the particles at constant surface volume. Silicon-, gallium-, indium-, or germanium-based; cadmium-based; and carbon-based QDs have already been used in many applications, such as imaging probes for the engineering of multifunctional nanodevices. Superior properties of QDs make them an excellent system in technology and biotechnology. This book describes electroanalytical applications of QD-based nanobiosensors, including brief information about the synthesis and characterization of QDs and basics of electroanalytical methods, followed by QDs in electrochemical biomimetic sensors, QDs in microchips, inorganic materials doped QDs, QD-based electrochemical DNA biosensors, electroluminescence for biomarker analysis using aptamer-based QDs, QD-based photoelectrochemical techniques, enzyme-based nanobiosensors using QDs, QD-based electrochemical immunosensors, and QD-modified nanosensors in drug analysis.
High-strength materials offer alternatives to frequently used materials for high-rise construction. A material of higher strength means a smaller member size is required to resist the design load. However, high-strength concrete is brittle, and high-strength thin steel plates are prone to local buckling. A solution to overcome such problems is to adopt a steel-concrete composite design in which concrete provides lateral restraint to steel plates against local buckling, and steel plates provide confinement to high-strength concrete. Design of Steel-Concrete Composite Structures Using High Strength Materials provides guidance on the design of composite steel-concrete structures using combined high-strength concretes and steels. The book includes a database of over 2,500 test results on composite columns to evaluate design methods, and presents calculations to determine critical parameters affecting the strength and ductility of high-strength composite columns. Finally, the book proposes design methods for axial-moment interaction curves in composite columns. This allows a unified approach to the design of columns with normal- and high-strength steel concrete materials. This book offers civil engineers, structural engineers, and researchers studying the mechanical performance of composite structures in the use of high-strength materials to design and construct advanced tall buildings.
Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics addresses the complexity of electromagnetic responses from arrays of dielectric resonators, which are often omitted from consideration when using simplified metamaterials concepts. The book's authors present a thorough consideration of dielectric resonances in different environments which is needed to design optical and photonic devices. Dielectric metamaterials and photonic crystals are compared, with their effects analyzed. Design approaches and examples of designs for invisibility cloaks based on artificial media are also included. Current challenge of incorporating artificial materials into transformation optics-based and photonics devices are also covered.
Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. Tribology in Coatings and Surface Treatment: Technology, Properties, and Applications evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices.
Biomedical Applications of Electrospinning and Electrospraying describes the principles and laboratory set up for electrospinning and electrospraying, addressing a range of biomedical applications. Sections cover novel combinational approaches, such as electrospinning/spraying and 3D printing. Electrospinning has evolved from being a technique to prepare random networks of textile fibers to a technique to fabricate highly ordered patterns of biomedical materials of defined scale. The technological advancements in recent years with regard to the way the jet is facilitated, how the jet path is controlled, and how the fibers are collected have provided invaluable insights into controlled fabrication of a material of choice. Additionally, the electrospray technique has also evolved from being a technique to prepare food formulations to a technique to prepare cell encapsulated beads for transplantation in clinics. Several innovations in this line, such as those leading to core-shell materials have tremendously changed the way the technique is used. Thus, a combinational approach using electrospinning, electrospraying and 3D printing has emerged.
Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications.
Microsupercapacitors systematically guides the reader through the key materials, characterization techniques, performance factors and potential applications and benefits to society of this emerging electrical energy storage solution. The book reviews the technical challenges in scaling down supercapacitors, covering materials, performance, design and applications perspectives. Sections provide a fundamental understanding of microsupercapacitors and compare them to existing energy storage technologies. Final discussions consider the factors that impact performance, potential tactics to improve performance, barriers to implementation, emerging solutions to those barriers, and a future outlook. This book will be of particular interest to materials scientists and engineers working in academia, research and development.
Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies. Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability.
Metal oxide nanomaterials exhibit interesting electrical and photochemical properties because of their size, stability, and high surface area that render them as great choices in fabricating alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of metal oxides with other materials lead to the improvement in electrical conductivity, stability, and electron transfer kinetics during the electrocatalytic reactions. These key factors result in greater sensitivity of the sensor materials towards the analyte molecules. This book reviews the electrochemical determination of a variety of toxic chemical contaminants using metal oxide-based nanocomposite materials. Ultrasensitive and selective detection of toxic chemical contaminants is important and demanding, especially for monitoring and controlling environmental pollution. In recent years, metal oxide-based nanocomposite materials have shown high potential in the electrochemical detection of heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare reagents. Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals comprehensively reviews this topic. In addition to the instrumental simplicity, the electrochemical methods show the improved sensor performance through the synergetic effect of metal oxide and other electroactive nanomaterial present in the nanocomposite. Thus, detailed information on the electrochemical sensing of toxic chemical contaminants using metal oxide-based nanomaterials are discussed. The recent progress in developing electrochemical sensors using metal oxide-based nanocomposite materials and perspectives on future opportunities in sensor research and development are addressed in the book.
Multiphase Polylactide Blends: Toward a Sustainable and Green Environment guides the reader through fundamentals, science, preparation, and key areas of innovation in polylactide (PLA) blends. Bio-based polymers, and notably PLA, have not only gained increasing interest as a more sustainable alternative but also bring challenges in terms of mechanical, rheological, thermal and physical properties, processability, shapability, and foamability. The use of blends looks to address these, with the development of new types of economically viable and environmentally friendly systems. This is a valuable book for academic researchers, scientists, and graduate students across bio-based polymers, polymer science, chemistry, and materials science, as well as engineers, R&D professionals, and all those in industry with interest in PLA-based blends, biopolymers, and sustainable materials and products. More specifically, the first three chapters of this book overview the fundamentals of thermoplastic polymers, polymer blends, and structure and properties of PLA. These chapters could technically be used as a valuable textbook on the noted topics. The rest of the chapters inclusively study the fundamentals, investigations, and achievements in PLA-based blends with various types of polymers. These include miscible blends of poly L-lactide and poly D-lactide, binary immiscible/miscible blends of PLA with other thermoplastics and elastomers, PLA-based ternary blends and blend nanocomposites, as well as PLA-based blend foams. Overall, this book provides a thorough and critical overview of the state of the art in PLA-based blends, including significant past and recent advances, with the aim of supporting and shaping further research and industrial application of these materials for the development of a green and sustainable future.
Characterization of Polymers and Fibres addresses an integral part of fiber and polymer manufacturing processes that is crucial in helping manufacturers ensure that final products achieve intended specifications. The characterization of fiber and polymers is needed for attributes including molecular weight, morphology, dyeing behavior, tensile, optical and thermal behavior. This book covers a wide range of characterization techniques, including thermal, X-ray diffraction, solubility, tensile, optical, hygroscopic and particle size distribution. Introductions and definitions are provided where beneficial to make topics accessible to a broad range of readers in both academia and industry. Addressing advances from the fields of bioscience, polymer science, material science, and textile science, this book is wide in scope, drawing on the latest research to provide details of characterization techniques and equipment.
Severe Plastic Deformation: Methods, Processing and Properties examines all severe plastic deformation techniques developed over the past two decades, exploring the appropriate severe plastic deformation method for a particular case. The book offers an overview of these methods, introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples, reviews effective parameters to make a severe plastic deformation method better, from property (mechanical) and processing (cost, time, load, etc.) viewpoints, discusses mechanical, physical and chemical properties of UFG and NS metals, and concludes with various applications for these methods. Over the last several decades, a large number of severe plastic deformation methods have been developed for processing a wide array of metals for superior properties, making this a timely resource.
Sustainable Biopolymer Composites: Biocompatibility, Self-healing, Modeling, Repair and Recyclability focuses on sustainable polymer composites also referred to as bio- composites. Vital aspects such as biodegradability, biocompatibility, repair and recyclability are discussed in detail. In addition, complexities like rapid and scalable processing, onsite repair, and minimal environmental effects are also covered along with the appropriateness of advanced polymer composites for structural applications in automotive, aviation and marine industries. This book will be an indispensable resource for scientists, engineers, physicists and chemists who are interested in the preparation, applications and repair analysis of bio-based composites and nano-composites for different types of applications. The composites repair process is extremely complex, hence it is essential to have a comprehensive understanding of damage mechanisms to apply the most suitable repair technique. Damage assessment using onsite inspection, e.g., NDT, THz techniques and the automated repair process for reliability and repeatability, are vital parameters when executing bonded composite repair. Furthermore, overall integrity and structural health monitoring of composites repair is also necessary.
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material. The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology. Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures.
Nanoscale Graphitic Carbon Nitride focuses on multi-functional applications including energy conversion, storage and healthcare. Polymeric graphitic carbon nitride materials have attracted much attention in recent years because of their similarity to graphene. They are composed of carbon, nitrogen and some minor hydrogen content. In contrast to graphene, g-Graphitic carbon nitride is a medium band-gap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions and applications. This book covers the fundamentals and applications of graphitic carbon nitride (g-C3N4) in different sectors. It also covers the application of graphitic carbon nitride-based composites with metal, metal oxides, metal sulphide and carbon-based materials. This is an important resource for researchers in the fields of materials science, engineering, energy storage and chemical engineering who want to understand how nanoscale graphitic carbon nitride is being used for a range of industrial applications and processes.
Composite materials have been well developed to meet the challenges of high-performing material properties targeting engineering and structural applications. The ability of composite materials to absorb stresses and dissipate strain energy is vastly superior to that of other materials such as polymers and ceramics, and thus they offer engineers many mechanical, thermal, chemical and damage-tolerance advantages with limited drawbacks such as brittleness. Composite Materials: Manufacturing, Properties and Applications presents a comprehensive review of current status and future directions, latest technologies and innovative work, challenges and opportunities for composite materials. The chapters present latest advances and comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites. The book targets researchers in the field of advanced composite materials and ceramics, students of materials science and engineering at the postgraduate level, as well as material engineers and scientists working in industrial R& D sectors for composite material manufacturing.
Polymer-Based Separators for Lithium-Ion Batteries: Production, Processing, and Properties takes a detailed, systematic approach to the development of polymer separators for lithium-ion batteries, supporting the reader in selecting materials and processes for high-performance polymer separators with enhanced properties. The book begins by introducing the polymeric materials that may be used for separators, as well as characterization techniques, before presenting the available technologies used to produce separators for use in lithium-ion batteries. Each technology is discussed in terms of the advantages and disadvantages of the chosen approach, with the properties of the separators made via each technology also summarized and compared in detail. In addition, areas for further development are addressed, and the limitations of current materials and separators in achieving those goals are highlighted. This is a valuable resource for scientists and engineers in the industry who work on polymer-based battery separators, polymers for electronic/energy applications, and new materials and processes for lithium-ion batteries. In academia, this book will be of interest to researchers and advanced students across the fields of polymer science, materials science, electronics, energy, and chemical engineering.
Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites: From Synthesis to Applications offers extensive coverage of polyhedral oligomeric silsesquioxanes and their nanocomposites, including their synthesis, characterization, interfacial interactions and advanced applications. Sections introduce essentials, information on their preparation and discussions on polymeric materials, including elastomers, thermoplastics, thermosetting polymers, polymer blends and IPNs. Further sections cover the latest analysis techniques, examine the properties of POSS-polymer nanocomposites, and discuss key application areas, such as biological, energy, defense, and space. Finally, issues surrounding industry implementation and lifecycle are explored. This is a valuable reference for researchers, scientists and advanced students in the areas of polymer composites and nanocomposites, polymer chemistry, polymer physics, polymer science, and materials science and engineering. In an industrial setting, this book will be of great interest to scientists, R&D professionals, and engineers across industries and disciplines.
Adhesive Bonding: Science, Technology and Applications, Second Edition guides the reader through the fundamentals, mechanical properties and applications of adhesive bonding. This thoroughly revised and expanded new edition reflects the many advances that have occurred in recent years. Sections cover the fundamentals of adhesive bonding, explaining how adhesives and sealants work, and how to assess and treat surfaces, how adhesives perform under stress and the factors affecting fatigue and failure, stress analysis, environmental durability, non-destructive testing, impact behavior, fracture mechanics, fatigue, vibration damping, and applications in construction, automotive, marine, footwear, electrical engineering, aerospace, repair, electronics, biomedicine, and bonding of composites. With its distinguished editor and international team of contributors, this book is an essential resource for industrial engineers, R&D, and scientists working with adhesives and their industrial applications, as well as researchers and advanced students in adhesion, joining, polymer science, materials science and mechanical engineering. |
You may like...
Electrospinning: Nanofabrication and…
Binding, Xianfeng Wang, …
Paperback
R3,671
Discovery Miles 36 710
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
|