![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Biopolymeric Nanomaterials: Fundamentals and Applications outlines the fundamental design concepts and emerging applications of biopolymeric nanomaterials. The book also provides information on emerging applications of biopolymeric nanomaterials, including in biomedicine, manufacturing and water purification, as well as assessing their physical, chemical and biological properties. This is an important reference source for materials scientists, engineers and biomedical scientists who are seeking to increase their understanding of how polymeric nanomaterials are being used for a range of biomedical and industrial applications. Biopolymeric nanomaterials refer to biocompatible nanomaterials, consisting of biopolymers, such as protein (silk, collagen, gelatin, ss-casein, zein, and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch, and heparin). Biopolymeric nanomaterials may be used as i) delivery systems for bioactive compounds in food application, (ii) for delivery of therapeutic molecules (drugs and genes), or for (iii) tissue engineering.
Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents.
Nano Tools and Devices for Enhanced Renewable Energy addresses key challenges faced in major energy sectors as the world strives for more affordable and renewable energy sources. The book collates and discusses the latest innovations in nanotechnology for energy applications, providing a comprehensive single resource for those interested in renewable energy. Chapters cover a range of nano tools and devices, as well as renewable energy types and sources, from energy storage to geothermal energy. Materials scientists, engineers and environmental scientists interested in the application and evaluation of innovative nano tools and devices in renewable energy technologies will find this book very valuable. Nanotechnology can help to reduce energy consumption and lessen toxicity burdens on the environment. Despite the rapid growth of development and use of nanotechnology in the modern world, there are still challenges faced by researchers and development groups in industry and academia. This book helps solve the problems of reduced accessibility of relevant research, presenting important information on adverse impacts on the environment, human health, safety and sustainability.
This book focuses on the application of carbon nanotubes and carbon nanofibers in traditional concretes based on Portland cement. Fundamental information is given related to the production technologies of carbon nanotubes and carbon nanofibers, as well as concretes and methods of incorporation. It also contains a section focusing on the possible negative effects of carbon nanotubes and carbon nanofibers on animals and humans. The book indicates benefits and possible problems related to the application of carbon nanotubes and carbon nanofibers in concrete. It is designed to be easy to access and digest for the reader, aiming to reach an audience, not only from academia, but also from the construction industry, materials producers, and contractors who might work with nanomaterials.
Fundamentals and Recent Advances in Nanocomposites Based on Polymers and Nanocellulose brings together the latest research in cellulose-based nanocomposites, covering fundamentals, processing, properties, performance, applications, and the state of the art. The book begins by explaining the fundamentals of cellulose and cellulose-based nanocomposites, including sources, extraction, types, classification, linkages, model structure, model compounds, and characterization techniques. The second part of the book covers the incorporation of cellulose fillers to improve the properties or characteristics of nanocomposites, organized by composite category, including in aerogels, thermoplastic composites, thermoset composites, bioplastic composites, carbon nanofibers, rubber composites, carbon fibers, and foaming materials. Throughout these chapters, there is an emphasis on the latest innovations and application potential. Finally, applications are explored in more detail, notably focusing on the utilization of nanocellulose in biodegradable composites for biomedical applications, along with other important industrial application areas. This book is of great interest to researchers, scientists, and advanced students working with bio-based materials, and across polymer science, nanomaterials, composite materials, plastics engineering, chemical engineering, materials science and engineering, as well as R&D professionals, engineers, and industrialists interested in the development of bio-based materials for advanced applications or material commercialization.
Sustainable Concrete Made with Ashes and Dust from Different Sources: Materials, Properties and Applications focuses on individual materials, addressing material characterization, their role in the strength and durability of construction materials, and structural applications. Each chapter reflects the current state-of-the-art in terms of the effective and efficient use of the material. Types of ashes covered are Coal Fly Ash, Coal Bottom Ash, Bagasse Ash, MSW Ash, Red Mud, Waste Marble Dust, Sewage Sludge Ash, and Cement Kiln Dust. This book is useful for civil engineers in the design and development of sustainable concrete by utilizing such types of ashes and researchers involved in the design and formulation of new cementitious materials.
Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics incorporates the results of four decades of research and applications of dielectric spectroscopy for solids, mostly for the investigation of materials used in electronics. The book differs from others by more detailed analysis of the features of dielectric spectra conditioned by specific mechanisms of electrical polarization and conductivity. Some original methods are presented in the simulation of frequency distributions (relaxers and oscillators), with methods proposed for various ferroelectrics frequency-temperature dielectric spectra. Also described are original methods for ferroelectrics on microwaves investigation, including the features of thin films study. The book is not burdened by complex mathematical proofs and should help readers quickly understand how to apply dielectric spectroscopy methods to their own research problems. More advanced readers may also find this book valuable as a review of the key concepts and latest advances on the topics presented.
Nickel Base Single Crystals Across Length Scales is addresses the most advanced knowledge in metallurgy and computational mechanics and how they are applied to superalloys used as bare materials or with a thermal barrier coating system. Joining both aspects, the book helps readers understand the mechanisms driving properties and their evolution from fundamental to application level. These guidelines are helpful for students and researchers who wish to understand issues and solutions, optimize materials, and model them in a cross-check analysis, from the atomistic to component scale. The book is useful for students and engineers as it explores processing, characterization and design.
Oxide Free Nanomaterials for Energy Storage and Conversion Applications covers in depth topics on non-oxide nanomaterials involving transition metal nitrides, carbides, selenides, phosphides, oxynitrides based electrodes, & other non-oxide groups. The current application of nanostructured nonoxides involves their major usage in energy storage and conversion devices variety of applications such as supercapacitor, batteries, dye-sensitized solar cells and hydrogen production applications. The current application of energy storage devices involves their usage of nanostructured non-oxide materials with improved energy and power densities. In this book readers will discover the major advancements in this field during the past decades. The various techniques used to prepare environmentally friendly nanostructured non-oxide materials, their structural and morphological characterization, their improved mechanical and material properties, and finally, current applications and future impacts of these materials are discussed. While planning and fabricating non-oxide materials, the readers must be concern over that they ought to be abundant, cost-efficient and environment-friendly for clean innovation and conceivably be of use in an expansive choice of utilization. The book gives detailed literature on the development of nanostructured non-oxides, their use as energy related devices and their present trend in the industry and market. This book also emphasis on the latest advancement about application of these noble non-oxide based materials for photocatalytic water-splitting. Recent progress on various kinds of both photocatalytic and electrocatalytic nanomaterials is reviewed, and essential aspects which govern catalytic behaviours and the corresponding stability are discussed. The book will give an updated literature on the synthesis, potential applications and future of nanostructured non-oxides in energy related applications. This book is highly useful to researchers working in the field with diversified backgrounds are expected to making the chapter truly interdisciplinary in nature. The contents in the book will emphasize the recent advances in interdisciplinary research on processing, morphology, structure and properties of nanostructured non-materials and their applications in energy applications such as supercapacitors, batteries, solar cells, electrochemical water splitting and other energy applications. Thus, nanotechnology researchers, scientists and experts need to have update of the growing trends and applications in the field of science and technology. Further, the postgraduate students, scientists, researchers and technologists are need to buy this book.
Viruses, Bacteria and Fungi in the Built Environment: Designing Healthy Indoor Environments opens with a brief introduction to viruses, bacteria and fungi in the built environment and discusses their impact on human health. Sections discuss the microbiology of building materials, the airborne transmission of viruses and bacteria in the built environment, and plumbing-associated microbiome. As the first book on this important area to be written in light of the COVID-19 pandemic, this work will be a valuable reference resource for researchers, civil engineers, architects, postgraduate students, contractors and other professionals working and interested in the field of the built environment. Elements of building design, including choice of materials, ventilation and plumbing can have important implications for the microbiology of a building, and consequently, the health of the building's occupants. This important new reference work explains the microbiology of buildings and disease control in the built environment to those who design and implement new construction and renovate.
Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid-liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, such as sensing and electrochemical imaging, that are familiar to the traditional electrochemist but whose extension to the nanoscale is nontrivial and reveals new chemical information. The subsequent three chapters present exciting new electrochemical methodologies that are specific to the nanoscale, including "single entity"-based methods and surface-enhanced electrochemical spectroscopy. These techniques, now sufficiently mature for exposition, have paved the way for major developments in our understanding of solid-liquid interfaces and continue to push electrochemical analysis toward atomic-length scales. The final three chapters address the rich overlap between electrochemistry and nanomaterials science, highlighting notable applications in energy conversion and storage. This is an important reference for both academic and industrial researchers who are seeking to learn more about how nanoscale electrochemistry has developed in recent years.
Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Applications focuses on the fundamental principles and promising applications of silicon-based hybrid nanoparticles in nanoelectronics, energy storage/conversion, catalysis, sensors, biomedicine, environment and imaging. This book is an important reference source for materials scientists and engineers who are seeking to understand more about the major properties and applications of silicon-based hybrid nanoparticles. As the hybridization of silicon nanoparticles with other semiconductors or metal oxides nanoparticles may exhibit superior features, when compared to lone, individual nanoparticles, this book provides the latest insights. In addition, the silicon/iron oxide hybrid nanoparticles also possess excellent fluorescence, super-paramagnetism, and biocompatibility that can be effectively used for the diagnostic imaging system in vivo. Similarly, gold-silicon nanohybrids could be used as highly efficient near-infrared hyperthermia agents for cancer cell destruction.
Foamability of Thermoplastic Polymeric Materials presents a cutting-edge approach to thermoplastic polymeric foams, drawing on the latest research and guiding the reader through the fundamental science, foamability, structure-property-processing relationship, multi-phase polymeric materials, degradation characteristics of biodegradable foams and advanced applications. Sections provide detailed information on foam manufacturing technologies and the fundamental science behind foaming, present insights on the factors affecting foamability, cover ways of enhancing the foamability of various polymeric materials, with special focus on multi-phase systems, discuss the degradation of biodegradable foams and special morphology development for scaffolds, packaging, acoustic and super-insulation applications, as well as cell seeding studies in scaffolds. Each application has specific requirements in terms of desired properties. This in-depth coverage and analysis helps those looking to move forward with microcellular processing and polymer foaming. This is an ideal resource for researchers, advanced students and professionals interested in the microcellular processing of polymeric materials in the areas of polymer foaming, polymer processing, plastics engineering and materials science.
Long-Acting Drug Delivery Systems: Pharmaceutical, Clinical, and Regulatory Aspects offers a comprehensive overview of the technical, clinical, regulatory and industrial perspectives on these drug delivery systems. The book follows a sequential order, beginning with the current technical state-of-the-field and moving on to more clinical, industrial and regulatory topics. Opening chapters describe the current needs and potential applications of implantable and long-acting therapeutic approaches. The book goes on to describe established and novel long-acting systems, with a focus on the materials used to prepare these systems and their biocompatibility. Importantly, applied topics such as scale-up manufacturing, products under clinical trials and regulatory aspects are covered, offering the reader a holistic view of this rapidly growing field.
Developments in data acquisition technologies, digital information and analysis, automated construction processes, and advanced materials and products have finally started to move the construction industry - traditionally reluctant to innovation and slow in adopting new technologies - toward a new era. Massive changes are occurring because of the possibilities created by Building information modeling, Extended reality, Internet of Things, Artificial intelligence and Machine Learning, Big data, Nanotechnology, 3D printing, and other advanced technologies, which are strongly interconnected and are driving the capabilities for much more efficient construction at scale. Construction 4.0: Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry provides readers with a state-of-the-art review of the ongoing digital transformation of the sector within the new 4.0 framework, presenting a thorough investigation of the emerging trends, technologies, and strategies in the fields of smart building design, construction, and operation and providing a comprehensive guideline on how to exploit the new possibilities offered by the digital revolution. It will be an essential reference resource for academic researchers, material scientists and civil engineers, undergraduate and graduate students, and other professionals working in the field of smart ecoefficient construction and cutting-edge technologies applied to construction.
The residual stress is a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, lightweight materials such as composites and their wide range of applications; it is critical that the residual stresses of composite materials are understood and measured correctly. The first edition of this book consists of thirteen chapters divided into two parts. The first part reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. There are also additional chapters on using mathematical (analytical and numerical) methods for the calculation of residual stresses in composite materials. These include the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses measuring residual stresses in different types of composites including polymer and metal matrix composites. The addition of nanoparticles to the matrix of polymeric composites as a new technique for the reduction of residual stresses is also discussed. In the Second Edition of this book, each of the original chapters of the first edition has been fully updated, taking into account the latest research and new developments. There are also five new chapters on the theoretical and experimental studies of residual stresses in the composite integrated circuits; residual stresses in additive manufacturing of polymers and polymer matrix composites; residual stresses in metal matrix composites fabricated by additive manufacturing; the eigenstrain based method for the incremental hole-drilling technique; and the estimation of residual stresses in polymer matrix composites using the digital image correlation technique. Residual Stresses in Composite Materials, Second Edition, provides a unique and comprehensive overview of this important topic and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine, and sporting industries.
Structured Light for Optical Communication highlights principles and applications in the rapidly evolving field of structured light in wide-ranging contexts, from classical forms of communication to new frontiers of quantum communication. Besides the basic principles and applications, the book covers the background of structured light in its most common forms, as well as state-of-the-art developments. Structured light has been hailed as affording outstanding prospects for the realization of high bandwidth communication, enhanced tools for more highly secure cryptography, and exciting opportunities for providing a reliable platform for quantum computing. This book is a valuable resource for graduate students and other active researchers, as well as others who may be interested in learning about this cutting-edge research field.
Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines the design elements and characterization of biocomposites, highlighting each class of biocomposite separately. A broad range of biomedical applications for biocomposites is then covered, with a final section discussing the ethics and safety regulations associated with manufacturing and the use of biocomposites. With contributions from eminent editors and recognized authors around the world, this book is a vital reference for researchers in biomedical engineering, materials science and environmental science, both in industry and academia.
Advancements in Intelligent Gas Metal Arc Welding Systems: Fundamentals and Applications presents the latest on gas metal arc welding which plays a significant role in modern manufacturing industries and accounts for about 70% of welding processes. The importance of advancements in GMAW cannot be underestimated as they can lead to more efficient production strategies, resource savings and quality improvements. This book provides an overview of various aspects associated with GMAW, starting from the theoretical basis and ending with characteristics of industrial applications and control methods. Additional sections cover processes associated with welding and welding control, such as fuzzy logic, artificial neural networks, and others.
The Handbook of Sustainable Concrete and Industrial Waste Management summarizes key research trends in recycling and reusing concrete and industrial waste to reduce their environmental impact. This volume also includes important contributions in collaboration with the CRI-TEST Innovation Lab, Naples - Acerra. Part one discusses eco-friendly innovative cement and concrete and reviews key substitute materials. Part two analyzes the use of industrial waste as aggregates and the mechanical properties of concrete containing waste materials. Part three discusses differences between innovative binders, focusing on alkali-activated and geopolymer concrete. Part four provides a thorough overview of the life cycle assessment (LCA) of concrete containing industrial wastes and the impacts related to the logistics of wastes, the production of the concrete, and the management of industrial wastes. By providing research examples, case studies, and practical strategies, this book is a state-of-the-art reference for researchers working in construction materials, civil or structural engineering, and engineers working in the industry.
Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales: From Single Buildings to Large-Scale Assessment provides an integrated, multiscale platform for fundamental and applied studies on the seismic vulnerability assessment of civil engineering structures, including buildings with different materials and building typologies. The book shows how various outputs obtained from different scales and layers of assessment (from building scale to the urban area) can be used to outline and implement effective risk mitigation, response and recovery strategies. In addition, it highlights how significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques. The wide variety of construction and structural systems associated with the complex behavior of their materials significantly limits the application of current codes and building standards to the existing building stock, hence this book is a welcomed guide on new construction standards and practices.
Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine offers a materials-focused and systematic overview of biopolymeric hydrogels utilized for biomedical applications. The book details the synthesis and characterization of plant and algal-based hydrogels, with each chapter addressing a separate polysaccharide hydrogel type. Specific applications in drug delivery and regenerative medicine are also discussed, highlighting the efficacy, biocompatibility, benefits and challenges for each polysaccharide hydrogel subtype. There is increasing demand for biomaterials which reduce/prevent the host response, inflammation and rejection, hence this book provides a timely resource. Biopolymeric hydrogels have skyrocketed because of their necessity in in vivo applications. They create an environment similar to living tissue, which is both biocompatible and biodegradable. Plant and algal polysaccharides in particular are well-equipped with functional groups that are easily modified for beneficial results.
|
You may like...
A Manifesto For Social Change - How To…
Moeletsi Mbeki, Nobantu Mbeki
Paperback
(4)
Intro to Python for Computer Science and…
Paul Deitel
Paperback
A Taste for China - English Subjectivity…
Eugenia Zuroski Jenkins
Hardcover
R3,058
Discovery Miles 30 580
Contemporary Plays by African Women…
Yvette Hutchison, Amy Jephta
Paperback
R864
Discovery Miles 8 640
|