![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
This volume emphasizes the growing need for wood products with advanced engineering properties. It details the fundamental principles of cellulose technology and presents current techniques to modifying the basic chemistry of lignocellulosic materials. The work: discusses the cost-efficient use of cellulose derivatives in a variety of commodities; highlights the chemical modification of wood by methods such as etherification, esterification and thermoplasticization; considers recent progress in the lignocellulosic liquefaction of wood; and more.
The Handbook of Ion Sources delivers the data needed for daily work
with ion sources. It also gives information for the selection of a
suitable ion source and ion production method for a specific
application.
Composite materials are increasingly used in aerospace, underwater, and automotive structures. They provide unique advantages over their metallic counterparts, but also create complex challenges to analysts and designers. Practical Analysis of Composite Laminates presents a summary of the equations governing composite laminates and provides practical methods for analyzing most common types of composite structural elements. Experimental results for several types of structures are included, and theoretical and experimental correlations are discussed. The last chapter is devoted to practical analysis using Designing Advanced Composites (DAC), a PC-based software on the subject. This comprehensive text can be used for a graduate course in mechanical engineering, and as a valuable reference for professionals in the field.
This volume examines important experimental techniques needed to characterise inorganic materials in order to elucidate their properties for practical application. Addressing methods that examine the structures and properties of materials over length scales ranging from local atomic order to long-range order on the meso- and macro-scopic scales, Multi Length-Scale Characterisation contains five detailed chapters: * Measurement of Bulk Magnetic Properties * Thermal Methods * Atomic Force Microscopy * Gas Sorption in the Analysis of Nanoporous Solids * Dynamic Light Scattering Ideal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Structure from Diffraction Methods) or as an examination of the specific characterisation techniques in their own right, Multi Length-Scale Characterisation is a valuable addition to the Inorganic Materials Series.
Sustainable development is a very prevalent concept of modern society. This concept has appeared as a critical force in combining a special focus on development and growth by maintaining a balance of using human resources and the ecosystem in which we are living. The development of new and advanced materials is one of the powerful examples in establishing this concept. Green and sustainable advanced materials are the newly synthesized material or existing modified material having superior and special properties. These fulfil today's growing demand for equipment, machines and devices with better quality for an extensive range of applications in various sectors such as paper, biomedical, textile, and much more. Volume 1 gives overviews on a variety of topics of characterization of green and sustainable advanced materials including biopolymers, biocomposites, nanomaterials, polymeric materials, green functional textiles materials and hybrid materials, as well as processing chapters on the design and process aspects of nanofabrication.
The authoritative reference on catalytic chemical vapor deposition, written by the inventor of the technology. This comprehensive book covers a wide scope of Cat-CVD and related technologies from the fundamentals to the many applications, including the design of a Cat-CVD apparatus. Featuring contributions from four senior leaders in the field, including the father of catalytic chemical vapor deposition, it also introduces some of the techniques used in the observation of Cat-CVD related phenomena so that readers can understand the concepts of such techniques. Catalytic Chemical Vapor Deposition: Technology and Applications of Cat-CVD begins by reviewing the analytical tools for elucidating the chemical reactions in Cat-CVD, such as laser-induced fluorescence and deep ultra-violet absorption, and explains in detail the underlying physics and chemistry of the Cat-CVD technology. Subsequently it provides an overview of the synthesis and properties of Cat-CVD-prepared inorganic and organic thin films. The last parts of this unique book are devoted to the design and operation of Cat-CVD apparatuses and the applications. Provides coherent coverage of the fundamentals and applications of catalytic chemical vapor deposition (Cat-CVD) Assembles in one place the state of the art of this rapidly growing field, allowing new researchers to get an overview that is difficult to obtain solely from journal articles Presents comparisons of different Cat-CVD methods which are usually not found in research papers Bridges academic and industrial research, showing how CVD can be scaled up from the lab to large-scale industrial utilization in the high-tech industry. Catalytic Chemical Vapor Deposition: Technology and Applications is an excellent one-stop resource for researchers and engineers working on or entering the field of Cat-CVD, Hot-Wire CVD, iCVD, and related technologies.
This book gathers peer-reviewed contributions presented at the 2nd RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete), held online and hosted by the Eindhoven University of Technology, the Netherlands from 6-9 July 2020. Focusing on additive and automated manufacturing technologies for the fabrication of cementitious construction materials, such as 3D concrete printing, powder bed printing, and shotcrete 3D printing, the papers highlight the latest findings in this fast-growing field, addressing topics like mixture design, admixtures, rheology and fresh-state behavior, alternative materials, microstructure, cold joints & interfaces, mechanical performance, reinforcement, structural engineering, durability and sustainability, automation and industrialization.
This MRS Proceedings book contains the papers presented in Symposium 7E: 'Low-Dimensional Semiconductor Structures' at XXII International Material Research Congress, IMRC 2013, and in Symposium 6B: 'Low-Dimensional Semiconductor Structures' at XXI International Material Research Congress, IMRC 2012, which were held in Cancun, Mexico on August 11-15, 2013 and August 12-16, 2012, respectively.
Polymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles. This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites. The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications. Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
Fluorite-based oxide materials such as stabilised zriconias, doped cerias, and urania represent a group of the most important key engineering materials in our modern society, with their well-known various electrochemical, ceramic and nuclear etc. applications. This is primarily due to their multi-lateral excellent physical/chemical properties such as high chemical/structure stability, high oxide ion conductivity, superior mechanical strength, and unique nuclear properties, and so on. For example, urania UO2 and urania-plutonia mixed-oxide (U,Pu)O2 are almost exclusively used to represent nuclear fuels in commercial nuclear power plants throughout the world. Also in non-nuclear next-generation clean hydrogen energy technology such as solid oxide fuel cells (SOFCs), stabilised zirconias and doped cerias are the key solid electrolyes (oxide ion conductors) for their current and future more efficient versions. Stabilised zirconias, the most widely used fluorite materials, find other various practical and potential applications such as solid electrolytes for oxygen sensors/monitors/pumps, thermal barrier coatings, conventional and novel super-plastic and ultra-hard structural/refractory ceramics, high-pressure media, dielectric insulators/substrates, catalysts, synthetic teeth/jewels, etc. in non-nulcear areas and inert-matrix fuel and radioactive nuclear waste form in the nuclear area. Ceria-based systems have recently attracted increasingly more attention also as catalysts for pollution gas/liquid management and chemical substance syntheses.
With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.
Deployment of Rare Earth Materials in Microware Devices, RF Transmitters, and Laser Systems describes the deployment of rare earth materials that offer significant improvement in the RF performance, reliability, weight, and size of microwave devices, RF transmitters, and laser systems. RF components, microware transmitters, laser systems, and special timing devices are described, with an emphasis on improvement in the performance parameters.
This book describes techniques of synthesis and self-assembly of macromolecules for developing new materials and improving functionality of existing ones. Because self-assembly emulates how nature creates complex systems, they likely have the best chance at succeeding in real-world biomedical applications. Employs synthetic chemistry, physical chemistry, and materials science principles and techniques Emphasizes self-assembly in solutions (particularly, aqueous solutions) and at solid-liquid interfaces Describes polymer assembly driven by multitude interactions, including solvophobic, electrostatic, and obligatory co-assembly Illustrates assembly of bio-hybrid macromolecules and applications in biomedical engineering
This is a unique X-ray atlas illustrating damage in composite plates caused by non-penetrating impacts. A valuable aid in designing composites for different types of impact resistance. Damage to composite materials caused by non-penetrating impact is often internal, invisible and difficult to detect. This atlas contains more than 400 revealing pictures of impact damage from a variety of loads under a variety of conditions. The parameters are varied systematically to produce useful, reliable design data.
This book provides an overview of electronic and optical properties of graphite-related systems. It presents a well-developed and up-to-date theoretical model and addresses important advances in essential properties and diverse quantization phenomena. Key features include various Hamiltonian models, dimension-enriched carbon-related systems, complete and unusual results, detailed comparisons with the experimental measurements, clear physical pictures, and further generalizations to other emergent 2D materials. It also covers potential applications, such as touch-screen panel devices, FETs, supercapacitors, sensors, LEDs, solar cells, photodetectors, and photomodulators.
This volume collects selected papers presented and discussed during the 9th National Conference organized by the Italian Association of Materials Engineering, AIMAT from 2008 at Piano di Sorrento (Napoli, Italy). It gives a valuable representation of highlights of the research and development activities running in 21 Italian universities and research centers in the field of materials science and engineering. All the reported research topics are focused on a methodological approach that takes into account scientific issues and engineering aspects related to real applications.
This book considers general aspects of the theory of polymers applied in optics. The main factors affecting the light loss in polymeric wave beam guides (PG) are discussed, and the mechanism of light loss in PG is analysed. Polymers applied in fiber optics are classified with reference to methods of fabrication and purification of the materials. Technological aspects of material fabrication are considered together with kinetic aspects of polymerisation. Updated information on polymerisation kinetics of MMA and styrene, and copolymerisation of these monomers with each other is reported. Other topics discussed in the book are heterogeneity of optic copolymers, association between structure and reactivity of monomers, other properties of optic copolymers, and areas of their commercial application. This volume will be of value and interest to anyone working in the field of optic polymers, both in academia and industry.
A unique and timely book on understanding and tailoring the flow of fluids in porous materials Porous media play a key role in chemical processes, gas and water purification, gas storage and the development of new multifunctional materials. Understanding hydrodynamics in porous media is decisive for enabling a wide range of applications in materials science and chemical engineering. This all-encompassing book offers a timely overview of all flow and transport processes in which chemical or physicochemical phenomena such as dissolution, phase transition, reactions, adsorption, diffusion, capillarity, and surface phenomena are essential. It brings together both theoretical and experimental results and includes important industrial applications. Physicochemical Fluid Dynamics in Porous Media: Applications in Geoscience and Petroleum Engineering explains the thermodynamics of phase equilibria for multicomponent fluids, physicochemical models of single-phase and immiscible two-phase flow, based on the macroscopic theory of oil displacement by water. It also covers the theory of two-phase flow with partial miscibility and describes partially miscible flows with phase transitions by means of the negative saturation approach. The final chapters are devoted to flow with chemical reactions, based on the example of in-situ leaching of uranium, and flow with bio-chemical reactions in terms of the underground storage of hydrogen. -Brings together the theoretical and experimental results necessary for the understanding of hydrodynamics in porous media -Covers important industrial applications such as underground leaching of uranium and underground storage of hydrogen -Presents a state-of-the-art overview and summarizes the research results usually found only scattered in the literature Physicochemical Fluid Dynamics in Porous Media: Applications in Geoscience and Petroleum Engineering will appeal to chemical engineers, materials scientists, applied physicists, and mechanical engineers.
This handbook is about a remarkable set of materials that are technically referred to as "mesoscopic superconductors", which for all practical purposes are tiny or small in their dimensions, ranging from a few micrometers down to a nanometer. At this level of smallness, the superconducting properties are dramatically changed, showing the dominance of quantum effects. Ground breaking research studies of small superconductors have emerged, and in a world obsessed with miniaturization of electronic device technology, small superconductors acquire even greater relevance and timeliness for the development of exciting novel quantum devices. The chapters, contributed by noted researchers and frontrunners in the field from 15 countries, are presented in three parts, namely progress in basic studies, materials specific research, and advances in nanodevices. The contents of the handbook should be of immediate interest to advanced level university students and researchers particularly in physics, materials science, nanoscience and engineering departments. Various reviews and overviews appearing in the book should answer the queries and curiosities of non-specialists interested in nanoscale superconductivity. At the start, the book carries an extended introduction for readers new to the field. The book should also appeal to scientists and engineers from electronic industries interested in knowing the current status of the theory, manufacture, and future of mesoscopic superconductors. In doing so, this volume offers the opportunity to engage with cutting edge research in one of the most exciting fields of physics today and tomorrow.
This book covers all aspects of the different classes of nanomaterials - from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements. The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage, structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix.
This book is a collection of technical papers focusing on the preparation, characterization and application of polymer-nanocomposites. The various chapters in the book are written by prominent researchers from industry, academia, and government/private research laboratories across the globe. Different techniques adopted for the preparation of nano composites, their methods of characterization and their applications are discussed. The main objective of this book is to summarize in a fairly comprehensive manner many of the recent technical accomplishments in the area of polymer nanocomposites. The book is intended to serve as a one stop reference resource for important research accomplishments in the area of polymer nanocomposites.
The first book to extensively cover nanoparticles, this addresses some of the key issues in nanocomposites. * Polymer nanocomposites (polymers reinforced with nanoparticles), are of great interest due to their remarkable mechanical, thermal, chemical properties as well as optical, electronic, and magnetic applications * Potential applications include automobile body parts, high-barrier packaging materials, flame-retardants, scratch-resistant composites, and biodegradable nanocomposites * Combines basic theory as well as advanced and in-depth knowledge of these properties * Broad audience includes researchers in Materials Science, Physics, Polymer Chemistry, and Engineering, and those in industry
This book presents a blueprint for researchers in the area of nanotechnology for chemical defense, especially with regard to future research on detection and protection. It addresses the synthesis of complex nanomaterials with potential applications in a broad range of sensing systems. Above all, it discusses novel experimental and theoretical tools for characterizing and modeling nanostructures and their integration in complex systems. The book also includes electronic structure calculations exploring the atomic and quantum mechanical mechanisms behind molecular binding and identification, so as to provide readers with an in-depth understanding of the capabilities and limitations of various nanomaterial approaches. Gathering contributions by scientists with diverse backgrounds, the book offers a wealth of insightful information for all scientists whose work involves material science and its applications in sensing.
The second edition of MECHANICS OF MATERIALS by Pytel and Kiusalaas is a concise examination of the fundamentals of Mechanics of Materials. The book maintains the hallmark organization of the previous edition as well as the time-tested problem solving methodology, which incorporates outlines of procedures and numerous sample problems to help ease students through the transition from theory to problem analysis. Emphasis is placed on giving students the introduction to the field that they need along with the problem-solving skills that will help them in their subsequent studies. This is demonstrated in the text by the presentation of fundamental principles before the introduction of advanced/special topics.
Demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials. Designed for those who need to learn how micromechanical approaches can help understand the behaviour of bodies with voids, inclusions, defects, this book is perfect for readers without a programming background. Thoroughly introducing the concept of micromechanics, it helps readers assess the deformation of solids at a localized level and analyse a body with microstructures. The author approaches this analysis using the computer algebra system Mathematica, which facilitates complex index manipulations and mathematical expressions accurately. The book begins by covering the general topics of continuum mechanics such as coordinate transformations, kinematics, stress, constitutive relationship and material symmetry. Mathematica programming is also introduced with accompanying examples. In the second half of the book, an analysis of heterogeneous materials with emphasis on composites is covered. Takes a practical approach by using Mathematica, one of the most popular programmes for symbolic computation * Introduces the concept of micromechanics with worked-out examples using Mathematica code for ease of understanding * Logically begins with the essentials of the topic, such as kinematics and stress, before moving to more advanced areas * Applications covered include the basics of continuum mechanics, Eshelby's method, analytical and semi-analytical approaches for materials with inclusions (composites) in both infinite and finite matrix media and thermal stresses for a medium with inclusions, all with Mathematica examples * Features a problem and solution section on the book s companion website, useful for students new to the programme |
![]() ![]() You may like...
Corrosion for Science and Engineering
K R Trethewey, J Chamberlain
Paperback
Elements of X-Ray Diffraction: Pearson…
B.D. Cullity, S.R. Stock
Paperback
Mechanics of Materials, SI Edition
Barry Goodno, James Gere
Paperback
Superalloys 2020 - Proceedings of the…
Sammy Tin, Mark Hardy, …
Hardcover
R9,801
Discovery Miles 98 010
Supramolecules in Drug Discovery and…
Thomas Mavromoustakos, Andreas G. Tzakos, …
Hardcover
R3,640
Discovery Miles 36 400
Bionanotechnology - Concepts and…
Ljiljana Fruk, Antonina Kerbs
Paperback
R1,148
Discovery Miles 11 480
|