![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Design and Applications of Theranostic Nanomedicines reviews the composition and design of various nanomedicines for theranostic applications, helping readers to make informed decisions when exploring novel treatments for disease. This book introduces readers to theranostic nanostructures as nanomedicines, beginning with a balanced look at the associated challenges, costs and benefits. The next section goes on to detail a range of different theranostic nanomedicines and their design, from nanodispersions and nanogels to exosomes and polymeric micelles. A variety of applications is covered, including in the treatment of pulmonary diseases, neurological disorders, cancers and more. The book also takes a look at the toxicological implications of nanotheranostics, an important aspect of any therapy or treatment. Design and Applications of Theranostic Nanomedicines provides a snapshot of the state-of-the-art, and will be of use to materials scientists, biomedical engineers and pharmaceutical scientists with an interest in nanotechnology and theranostics.
Engineered Nanostructures for Therapeutics and Biomedical Applications offers a single reference for a diverse biomedical readership to learn about the application of nanotechnology in biomedicine and biomedical engineering, from past developments to current research and future prospects. This book sets out a broad selection of biomedical and therapeutic applications for nanostructures, including bioimaging, nanorobotics, orthopedics, and tissue engineering, offering a useful, multidisciplinary approach. Each chapter discusses challenges faced in each discipline, including limiting factors, biocompatibility, and toxicity, thus enabling the reader to make informed decisions in their research. This book is a comprehensive, broad overview of the role and significance of nanomaterials and their composites that also includes discussions of key aspects in the field of biomedicine. It will be of significant interest to academics and researchers in materials science and engineering, biomedicine and biomedical engineering, chemical engineering, pharmaceutics, bioimaging, and nanorobotics.
Fused Deposition Modeling of Composite Materials is dedicated to the field of 3D-printing of composite materials using a popular technique called Fused Deposition Modeling (FDM), the world's most popular 3D printing method. But this method is currently limited to printing basic polymers and only a handful of primitive composite materials. Many future industries, such as Space, Biomed, Construction and Defense are waiting for the ability to 3D print composites and new functional materials with complex shapes and features so they can add unique and customizable features to their parts, including biocompatibility, radiation shielding, high-strength, rapid cooling, flexibility and shape-memory. The book's authors take the reader through the basics of what the FDM technique is all about and describe the advantages and new opportunities arising from 3D printing innovative materials, which include polymer-matrix composites and fully inorganic parts. They then review and discuss methods for making the different types of composite feedstock filaments needed to 3D print such materials by FDM. Finally, sections discuss the challenges that should be considered in making filaments and parts and how to go about solving them.
Carbon Dots in Analytical Chemistry: Detection and Imaging explores recent progress in the field of carbon dots synthesis and properties and their integration with various miniaturized analytical devices for the detection of chemical species and imaging of cells. This book is dedicated to exploring the potential applications of carbon dots in analytical chemistry for clinical microbiology, pharmaceutical analysis and environmental analysis. Sections cover synthetic approaches and properties, sample preparation, analytical techniques for the detection of chemical species, imaging of molecules and cells, and analytical tools for biomedical and food analysis. The will be a valuable book for analytical and materials scientists, physical and chemical scientists, and engineers investigating the use of carbon nanomaterials in their analytical procedures.
Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings discusses these machine elements that are used to accommodate motion on or about shafts in mechanical systems, with ball bearings, cylindrical roller bearings, spherical roller bearings, and tapered roller bearings reviewed. Each bearing type experiences different kinds of motion and forces with their respective raceway, retainers and guiding flanges. The material in this book identifies the tribology of the major bearing types and how that tribology depends upon materials, surfaces and lubrication. In addition, the book describes the best practices to mitigate common failure modes of rolling element bearings.
Multifunctional Nanocarriers provides information on the concept, theory and application of multifunctional nanocarriers. The book covers current research, beginning with product strategy, targeted drug delivery, and advanced drug delivery approaches, along with numerous multifunctional nanocarriers and their regulatory considerations for product development. The book covers targeting, receptor mediated targeting, and recent advancements using multifunctional nanocarriers and their regulatory aspects. This is an important reference source for materials scientists and engineers who want to learn more about how multifunctional nanocarriers are applied in a range of biomedical applications.
Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances.
Bio-Based Flame Retardants for Polymeric Materials provides a comprehensive overview of flame retardants derived directly and indirectly from plant sources, drawing on cutting-edge research and covering preparation methods, testing and evaluation techniques, enhanced properties, and end applications. Chapters introduce bio-based materials in the context of additives for flame retardancy, explaining fundamentals and testing methods and analyzing synthetic approaches and the potential advantages of pursuing a bio-based approach. This is followed by detailed coverage of bio-based retardants, with each chapter covering a specific source and guiding the reader systematically through preparation techniques, evaluation methods, properties and applications. Throughout the book, the latest progress in the field is critically reviewed, and there is a continual emphasis on novel approaches to achieve enhanced properties and performant materials. This is an essential guide for all those with an interest in innovative, sustainable flame retardant additives for polymeric materials, including researchers, scientists, advanced students, and more.
The Mechanics of Hydrogels: Mechanical Properties, Testing, and Applications offers readers a systematic description of the mechanical properties and characterizations of hydrogels. Practical topics such as manufacturing hydrogels with controlled mechanical properties and the mechanical testing of hydrogels are covered at length, as are areas such as inelastic and nonlinear deformation, rheological characterization, fracture and indentation testing, mechanical properties of cellularly responsive hydrogels, and more. Proper instrumentation and modeling techniques for measuring the mechanical properties of hydrogels are also explored.
Polymeric Micelles for Drug Delivery provides a comprehensive overview on the synthesis, characterization and application of polymeric micelles in drug delivery applications. The use of nanomedicines and carriers, such as polymeric micelles, has made it possible to deliver drugs, genes and therapeutic agents to localized disease sites to maximize clinical benefit while limiting unwanted side effects. This book thoroughly reviews the development and application of polymeric micelles for drug delivery, covering various polymer types and the synthesis, characterization and pharmacokinetics of different micelles. Subsequent chapters go on to look at the range of drug delivery applications of polymeric micelles - such as mucosal and transdermal - and the assorted stimuli-responsive micelles available. The book concludes with an important analysis of the environmental and regulatory aspects associated with micelle development and clinical translation.
Plasma technology can facilitate the fabrication of nanomaterials and nanoscale structures. On the other hand, nanotechnology could be possibly used in plasma science. Several advanced nanomaterials and nanodevices could be used to fabricate nanoplasma (nanoscale plasma), such as nanoelectrodes, nanoantennae, nanolasers, nanoreactors, nanomagnets, nanosensors, nanobatteries, nanogenerator and supercapacitors. This book provides information on fundamental design concepts and promising applications of nanoplasma. It explains how, for the next generation of electronic devices with high data rate communications, a high-speed operation of electronic switches could be attained using nanoplasma. Similarly, in the field of heath and aesthetics, nanoplasma can be used as a non-surgical localized treatments for the face and neck, such as eyelid correction. In addition, various kinds of advanced nanostructures can be fabricated using the plasma technology
Wool Fiber Reinforced Polymer Composites is an in-depth and practical exploration of wool-based composites, covering everything from the morphology of wool fiber to the industrial applications of wool composites. Wool has emerged in the top position for this role because of its unique characteristics. While fine wool is too costly for many such applications, coarse wool of greater than 35 microns fiber length is globally under-utilized. This pioneering book describes every form of wool composite, woven, nonwoven, felt and fiber, including different fabrication methods. In unique detail, the international team of expert contributors describe the morphology, structure and properties of wool, methods for the chemical modification of wool, different forms of wool-polymer composites, and many exciting emerging applications.
Nano-Enabled Technologies for Water Remediation highlights several aspects of wastewater treatment using low-dimensional carbon-based materials. The book also focuses on advances in membrane-based separation, specifically on the pressure driven membrane process. In the case of membrane advances, the focus is exclusively on metal and metal oxide, mixed matrix membranes, GO, and CNT loaded membranes for targeted pollutant removal. Further, new and upcoming technologies of membrane preparation, via the electrospinning method, and advances in membrane distillation and wastewater remediation are discussed. In addition, the book includes coverage of recent advances occurring in sustainable technologies for wastewater remediation with bio-active nanomaterials, bio-inspired, and bio-templated nanomaterials which assist readers in gaining a new perspective for implementing nature-mimicked designs for water treatment and conservation.
Alkali-activated materials, including geopolymers, are being studied at an increasing pace for various high-value applications. The main drivers for this emerging interest include the low-energy, low-cost, and readily up-scalable manufacturing process; the possibility to utilize industrial wastes and by-products as raw materials; and beneficial material properties comparable to conventional materials. It has already been verified that alkali-activated materials are very versatile in environmental technology applications for pollution control. The current research in the field focuses on advanced manufacturing methods, material properties, and applications, for example, additive manufacturing, modification of surface chemistry, CO2 capture, and green catalysis. Alkali-Activated Materials in Environmental Technology Applications discusses what novel possibilities alkali-activated materials provide in comparison to conventional materials (such as high-temperature ceramics, synthetic zeolites, or organic polymers). The specific environmental applications that are covered include water and wastewater treatment, air pollution control, stabilization/solidification of hazardous wastes, and catalysts in chemical processes. In addition, preparation methods, material properties, and the chemistry of alkali-activated materials are revisited from the viewpoint of environmental technology applications. This book also discusses how well alkali-activated materials fit under the concepts of green chemistry and circular economy and how the life cycle analysis of these materials compares to conventional materials.
This monograph is a detailed introduction to the nascent and ever-evolving fields of metamaterials and nanophotonics, with key techniques and applications needed for a comprehensive understanding of these fields all detailed. These include the 'standard' and high-accuracy 'nonstandard' FDTD techniques, finite-difference frequency-domain mode solvers, the transfer matrix method, analytic calculations for dielectric and plasmonic waveguides, dispersion, Maxwell-Bloch and density functional theory, as well as design methods for constructing metamaterials and nanolasers, and quantum plasmonics. The book is intended for final-year undergraduates, as well as postgraduates or active researchers who wish to understand and enter these fields in a 'user-friendly' manner, and who have a basic understanding of and familiarity with electromagnetic theory.
A comprehensive look combining experimental and theoretical approaches to graphene, nanotubes, and quantum dots-based nanotechnology evaluation and development are including a review of key applications. Graphene, nanotubes, and quantum dots-based nanotechnology review the fundamentals, processing methods, and applications of this key materials system. The topics addressed are comprehensive including synthesis, preparation, both physical and chemical properties, both accepted and novel processing methods, modeling, and simulation. The book provides fundamental information on key properties that impact performance, such as crystal structure and particle size, followed by different methods to analyze, measure, and evaluate graphene, nanotubes, and quantum dots-based nanotechnology and particles. Finally, important applications are covered, including different applications of biomedical, energy, electronics, etc. Graphene, nanotubes, and quantum dots-based nanotechnology is appropriate for those working in the disciplines of nanotechnology, materials science, chemistry, physics, biology, and medicine.
Nanoparticle-Based Polymer Composites discusses recent advancements on the synthesis, processing, characterization and applications of this new class of hybrid materials. Chapters cover recycling and lifecycle assessment, with contributions from leading researchers in industry, academics, the government and private research institutes from across the globe. As nanoparticle-based polymer composites are now replacing traditional polymer composites in a broad range of applications such as fuel cells, electronic and biomedical devices, this book presents the latest advancements in the field. Studies have shown that incorporating metal nanoparticles in polymer matrices can improve their mechanical, thermal, electrical and barrier properties. The unique combination of these properties makes this new class of materials suitable for a broad range of different and advanced applications.
After over two decades of focused research and development, silicon carbide (SiC) is now ready for use in the healthcare sector and Silicon Carbide Technology for Advanced Human Healthcare Applications provides an up-to-date assessment of SiC devices for long-term human use. It explores a plethora of applications that SiC is uniquely positioned for in human healthcare, beginning with the three primary areas of technology which are closest to human trials and thus adoption in the healthcare industry: neural implants and spinal cord repair, graphene and biosensors, and finally deep tissue cancer therapy using SiC nanotechnology. Biomedical-inspired engineers, scientists, and healthcare professionals will find this book to be very useful in two ways: (I) as a guide to new ways to design and develop advanced medical devices and (II) as a reference for new developments in the field. The book's intent is to stimulate ideas for further technological enhancements and breakthroughs, which will provide alternative solutions for human healthcare applications.
Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigms, Forecasting Energy for Tomorrow's World with Mathematical Modeling and Python Programming Driven Artificial Intelligence delivers knowledge on key infrastructure topics in both AI technology and energy. Sections lay the groundwork for tomorrow's computing functionality, starting with how to build a Business Resilience System (BRS), data warehousing, data management, and fuzzy logic. Subsequent chapters dive into the impact of energy on economic development and the environment and mathematical modeling, including energy forecasting and engineering statistics. Energy examples are included for application and learning opportunities. A final section deliver the most advanced content on artificial intelligence with the integration of machine learning and deep learning as a tool to forecast and make energy predictions. The reference covers many introductory programming tools, such as Python, Scikit, TensorFlow and Kera.
Bamboo Fibres: Processing, Properties, and Applications brings together best practices from key stages of bamboo production and application, allowing readers to find new solutions for bamboo fibers. Chapters on bamboo fiber characterization and properties show the full range of functional uses of the material. When used as a replacement for petrochemical-based synthetic fibers, this abundant and cheap material/textile can significantly reduce the environmental impact of textile products. This book is an invaluable resource for fiber chemists, material scientists, fabric technologists, manufacturers, and researchers interested in sustainable textiles. Bamboo fiber is a cellulosic fibre regenerated from the bamboo plant. It is highly sustainable being fully biodegradable and has strength comparable to conventional glass fibers. It has many other valuable characteristics, being bacteriostatic, antifungal, antibacterial, hypoallergenic, hydroscopic, a natural deodorizer, and resistant to ultraviolet light. Furthermore, it is highly durable, stable and tough and has substantial tensile strength. Due to its versatile properties, bamboo fibers are already used in the textile industry to make garments, in biomedical applications due to its antibacterial qualities, and many other areas.
Xenes: 2D Synthetic Materials Beyond Graphene includes all the relevant information about Xenes thus far reported, focusing on emerging materials and new trends. The book's primary goal is to include full descriptions of each Xene type by leading experts in the area. Each chapter will provide key principles, theories, methods, experiments and potential applications. The book also reviews the key challenges for synthetic 2D materials such as characterization, modeling, synthesis, and integration strategies. This comprehensive book is suitable for materials scientists and engineers, physicists and chemists working in academia and R&D in industry. The discovery of silicene dates back to 2012. Since then, other Xenes were subsequently created with synthetic methods. The portfolio of Xenes includes different chemical elements of the periodic table and hence the related honeycomb-like lattices show a wealth of electronic and optical properties that can be successfully exploited for applications.
Metal Oxides for Optoelectronics and Optics-based Medical Applications reviews recent advances in metal oxides and their mechanisms for optoelectronic, photoluminescent and medical applications. In addition, the book examines the integration of key chemistry concepts with nanoelectronics that can improve performance in a diverse range of applications. Sections place a strong emphasis on synthesis processes that can improve the metal oxides' physical properties and the reflected surface chemical changes that can impact their performance in various devices like light-emitting diodes, luminescence materials, solar cells, etc. Finally, the book discusses the challenges associated with the handling and maintenance of metal oxides crystalline properties. This book will be suitable for academics and those working in R&D in industry looking to learn more about cheaper and more effective methods to produce metal oxides for use in the fields of electronics, photonics, biophotonics and engineering.
Nano-biosorbents for Decontamination of Water, Air, and Soil Pollution explores the properties of nanobiosorbents and their applications in the removal of contaminants from the natural environment. The use of nanobiosorbents for environmental protection is a combinational approach that incorporates nanotechnology with naturally occurring biopolymers that form an amalgamation of nano-biopolymers used as sorbent materials in the removal of a variety of contaminants from wastewaters. This is an important reference source for materials scientists, bioscientists and environmental scientists who are looking to understand how nanobiosorbents are being used for a range of environmental applications.
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. |
![]() ![]() You may like...
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R106,138
Discovery Miles 1 061 380
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
Electrospinning: Nanofabrication and…
Binding, Xianfeng Wang, …
Paperback
R3,900
Discovery Miles 39 000
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R6,258
Discovery Miles 62 580
|