![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Nanomaterials for Sensing and Optoelectronic Applications explores recent trends in nanomaterials and devices for chemical and biosensing applications. The synthesis, properties and applications of metal oxide nanostructures, as well as two-dimensional layered materials are covered, along with the fabrication of optoelectronic devices, such as chemical sensors, biosensors, core-shell nanostructures-based surface-enhanced Raman spectroscopy (SERS) substrates, luminescent nanoparticles, memory devices, and thin film transistors. Aiming at researchers in these respective areas, the fundamental principles and mechanisms of the optoelectronic phenomena behind every application mentioned are covered and comprehensively explored. The book will be helpful in solving problems related to the synthesis and growth of various nanostructures, the application of these materials for various devices, and to understand how a specific synthesis route promotes a specific application.
Principles of Biomaterials Encapsulation: Volume Two provides an expansive and in-depth resource covering the key principles, biomaterials, techniques and applications of encapsulation in translational medicine. The book details the various biomaterials available for encapsulation, including polymers, natural and synthetic biomaterials, porous materials, and more. The advantages and disadvantages of conventional and contemporary biomaterials for encapsulations are reviewed, along with advice on the most effective materials for both shell and core. The final part of the book describes a broad range of applications in regenerative medicine, uniquely bringing encapsulation into the worlds of translational medicine and tissue engineering. This book enables readers to learn about the pros and cons of different biomaterials for encapsulation, as well as how they can be utilized in many bodily systems and tissues, such as the respiratory, digestive, endocrine and cardiovascular systems. Written and edited by well-versed materials scientists with extensive clinical, biomedical and regenerative medicine experience, this book offers a deeply interdisciplinary look at encapsulation in translational medicine.
Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides, metal phosphides, metal nitrides, metal borides, and more. Each chapter introduces important properties and material design strategies, including composite and morphology design. There is also an emphasis on cost-effective materials design and fabrication for optimized performance for electrocatalytic water splitting applications. Lastly, the book touches on recently developed in-situ characterization methods applied to observe and control the material synthesis process.
Natural Materials-based Green Composites 1: Plant Fibers explores several important plant fiber-based materials such as wood fibers, vegetable fibers, jute fibers, stalk fibers and hemp fibers. The book provides introductory information and various innovative applications of most important plant fiber-based materials such as wood fibers, vegetable fibers, jute fibers, stalk fibers, and hemp fibers.It investigates their structure and provides various innovative applications and discusses the microstructure of wood and mechanical properties of green wood-based composites (GWC), eco-friendly applications of green composites as building materials, and applications in wastewater treatment. The book also discusses seaweed and cotton fibers for their applications as adhesive and in reinforcement.The book is complemented by Natural Materials-based Green Composites 2: Biomass that deals with a broad range of material types, including natural fiber reinforced polymer composites, particulate composites, fiberboard, wood fiber composites, and plywood composite that utilize natural, renewable, and biodegradable agricultural biomass.
Applications of Nanostructured Ferrites provides an overview of materials design and characterization of ferrite nanomaterials for a diverse array of applications. In particular, the book investigates the large-scale use of ferrite materials, an important category of magnetic materials for environmental remediation such as waste water treatment. In addition, it considers ferrites to enable new technologies in energy, sensing, flexible and conductive electronics, and MEMs applications. This book is suitable for researchers and practitioners in the disciplines of materials science, engineering, chemistry and physics.
Polysaccharide-Based Hydrogels: Synthesis, Characterization and Applications looks at the synthesis, characterization and application of polysaccharide-based materials in a broad array of fields. The book discusses the role of polysaccharides in the preparation of hydrogels, the use of hydrogel-based green materials, and their applications in biomedical applications, drug delivery, water purification techniques, food industries, agricultural fields, and pharmaceuticals applications. Written by leading experts in this field, this book will be a valuable reference for scientists, academicians, researchers, technologists, consultants and policymakers.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development.
TSV 3D RF Integration: High Resistivity Si Interposer Technology systematically introduces the design, process development and application verification of high-resistivity silicon interpose technology, addressing issues of high frequency loss and high integration level. The book includes a detailed demonstration of the design and process development of Hr-Si interposer technology, gives case studies, and presents a systematic literature review. Users will find this to be a resource with detailed demonstrations of the design and process development of HR-Si interposer technologies, including quality monitoring and methods to extract S parameters. A series of cases are presented, including an example of an integrated inductor, a microstrip inter-digital filter, and a stacked patch antenna. Each chapter includes a systematic and comparative review of the research literature, offering researchers and engineers in microelectronics a uniquely useful handbook to help solve problems in 3D heterogenous RF integration oriented Hr-Si interposer technology.
BSIM-Bulk Mosfet Model for Wireless and Mixed-Mode ICs provides in-depth knowledge of the internal operation of the model. The authors not only discuss the fundamental core of the model, but also provide details of the recent developments and new real-device effect models. In addition, the book covers the parameter extraction procedures, addressing geometrical scaling, temperatures, and more. There is also a dedicated chapter on extensive quality testing procedures and experimental results. This book discusses every aspect of the model in detail, and hence will be of significant use for the industry and academia. Those working in the semiconductor industry often run into a variety of problems like model non-convergence or non-physical simulation results. This is largely due to a limited understanding of the internal operations of the model as literature and technical manuals are insufficient. This also creates huge difficulty in developing their own IP models. Similarly, circuit designers and researcher across the globe need to know new features available to them so that the circuits can be more efficiently designed.
Food, Medical, and Environmental Applications of Nanomaterials is designed to cover different types of nanomaterials that have applications related to the environment, food and medicine. It is an important resource for materials scientists and bioengineers looking to learn more about the applications of nanomaterials for sustainable development applications. Nanoscale materials possess excellent properties that have been explored in the areas of biomedicals, food, agriculture, the environment, catalysis, sensing and energy storage. Examples of these new applications include smart and active food packaging, nanobiosensors, bioremediation, wastewater treatment, implant coatings, tissue engineering, delivery systems for food and pharmaceutical applications, and food safety.
Water-Formed Deposits: Fundamentals and Mitigation Strategies wholly presents the important issue of deposits in aqueous systems, both industrial and biological. By analyzing causes, mechanisms and mitigation strategies, the book helps researchers/engineers/end-users gain a fundamental understanding of the issues underlying deposit formation and mitigation. It covers numerous, fundamental aspects of water-formed deposits, while also giving an applications' perspective. The book's goal is to assist the reader in his/her understanding of the important issues of scale formation, while also helping with potential solutions.
Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications serves as a reference on the key concepts of the advances of polymer-oxide composites. The book reviews knowledge on polymer-composite theory, properties, structure, synthesis, and their characterization and applications. There is an emphasis on coupling metal oxides with polymers from renewable sources. Also, the latest advances in the relationship between the microstructure of the composites and the resulting improvement of the material's properties and performance are covered. The applications addressed include desalination, tissue engineering, energy storage, hybrid energy systems, food, and agriculture. This book is suitable for early-career researchers in academia and R&D in industry who are working in the disciplines of materials science, engineering, chemistry and physics.
Analysis of Flame Retardancy in Polymer Science is a scientific/practical book that is conceptualized, designed, and written for students, early-career researchers, and junior engineers to explain the basic principles of fire analysis/characterization methods/methodologies, from flammability, ignition, and fire spread to forced convection and related analyses and to elucidate the mechanisms underlying flame retardancy in both gas and condensed phases followed by correlation between laboratory- and real-scale fire analyses as well as fire analysis from an industrial standpoint. This book is also an indispensable resource for identifying and mounting the latest achievements in fire analysis/characterization methods to frame the effects of fire evaluation strategies to be utilized for research and development. The book also gives a broad description of fire analysis related to different standards and regulations for different applications in different geographic zones.
Composite Laminated: Theories and Their Applications presents the latest methods for analyzing composite laminates and their applications. The title introduces the most important analytical methods in use today, focusing on fracture, damage, multi-physics and sensitivity analysis. Alongside these methods, it presents original research carried out over two decades on laminated composite structures and gives detailed coverage of laminate theories, analytic solutions and finite element models. Specific chapters cover An introduction to composites, Elasticity, Shear, State space theory, Layerwise theories, The extended layerwise method, Fracture and damage mechanics, Multi-physical fracture problems, Analytical methods of stiffened sandwich structures, Progressive failure analysis, and more. This volume offers a comprehensive guide to the state-of-the-art in the analysis and applications of composite laminates, which play a critical role in all types of engineering, from aerospace to subsea structures, including in medical prosthetics, circuit boards and sports equipment.
Nanostructured Materials for Tissue Engineering introduces the key properties and approaches involved in using nanostructured materials in tissue engineering, including functionalization, nanotechnology-based regenerative techniques, toxicological and biocompatible aspects. A broad range of nanomaterial types are covered, from polymer scaffolds and nanocomposites to gold nanoparticles and quantum dots. This book aids the reader in materials selection, as well as matching to the best applications, including bone, skin, pulmonary or neurological tissue engineering. Users will find this book to be an up-to-date review on this fast-changing field that is ideal for materials scientists, tissue engineers, biomedical engineers, and pharmaceutical scientists.
Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells.
Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications presents the latest developments in natural rubber and synthetic rubber-based blends and nanocomposites, with a focus on current trends, future directions and state-of-the-art applications. The book introduces the fundamentals of natural rubber and synthetic rubbers, outlining synthesis, structure, properties, challenges and potential applications. This is followed by detailed coverage of compounding and formulations, manufacturing methods, and preparation of elastomer-based blends, composites, and nanocomposites. The next section of the book focuses on properties and characterization, examining elasticity, spectroscopy, barrier properties, and rheological, morphological, mechanical, thermal, and viscoelastic behavior, and more. This is a highly valuable resource for researchers and advanced students in rubber (or elastomer) science, polymer blends, composites, polymer science, and materials science and engineering, as well as engineers, technologists, and scientists working with rubber-based materials for advanced applications.
Biomaterials for Neural Tissue Engineering covers a range of materials and technologies used for regenerating or repairing neural tissue. With a strong focus on biomaterials and scaffolds, the book examines the testing and evaluation pathway for in-vitro and in-vivo testing trials. This book introduces the reader to the fundamentals of the nervous system from a tissue engineering perspective and goes on to describe contemporary technologies used in the development of neural repair materials, as well as currently available biomaterials suitable for neural tissue repair and regeneration. This detailed reference is ideal for those who are new to using biomaterials in tissue engineering, particularly those interested in the nervous system, including academics and early career researchers in the fields of materials science, regenerative medicine, biomedical engineering and clinical sciences.
Solar Energy Harvesting, Conversion and Storage: Materials, Technologies and Applications focuses on the current state of solar energy and the recent advancements in nanomaterials for different technologies, from harnessing energy to storage. The book covers different aspects of advanced nanomaterials for solar energy, rapid developments in solar thermal and hot water systems, and PV and CSP technologies. The book also discusses storing harnessed solar/heat energy using different available energy storage technologies, including phase change materials (PCMs), batteries, and supercapacitors. Various applications such as agriculture and aquaculture, desalination, domestic appliances, and transport are explored, as well.
Advances in Nonlinear Photonics combines fundamental principles with an overview of the latest developments. The book is suitable for the multidisciplinary audience of photonics researchers and practitioners in academia and R&D, including materials scientists and engineers, applied physicists, chemists, etc. As nonlinear phenomena are at the core of photonic devices and may enable future applications such as all-optical switching, all-optical signal processing and quantum photonics, this book provides an overview of key concepts. In addition, the book reviews the most important advances in the field and how nonlinear processes may be exploited in different photonic applications.
AI-based technologies and, in a broader sense, digital technologies have become very important in civil engineering design. Artificial Intelligence-Based Design of Reinforced Concrete Structures: Artificial Neural Networks for Engineering Applications is an essential reference resource for those readers who want to learn how to perform artificial intelligence-based structural design. The book describes in detail the main concepts of ANNs and their application and use in civil and architectural engineering. It shows how neural networks can be established and implemented depending on the nature of a broad range of diverse engineering problems. The design examples include both civil and architectural engineering solutions, for both structural engineering and concrete structures. Those who have not had the opportunity to study or implement neural networks before will find this book very easy to follow. It covers the basic network theory and how to formulate and apply neural networks to real-world problems. There are plenty of examples based on real engineering problems and solutions.
Cemented Carbides describes all aspects related to the fabrication and examination of cemented carbides, starting from the production of raw materials and ending with final operations of surface finishing and coating. Basic phase diagrams of WC-based cemented carbides are presented and analyzed. Technological processes and equipment employed on different stages of the cemented carbide manufacture, including milling, granulation, pressing, sintering, surface finishing and deposing wear-resistant coatings are described, as well as modern techniques and instruments employed for controlling the microstructure and properties of cemented carbide.
Titanium Alloys for Biomedical Development and Applications: Design, Microstructure, Properties and Application systematically introduces basic theories and progress in the research of biomedical ss-Ti alloys achieved by researchers from different fields. It focuses on a high-strength and low elastic modulus biomedical ss-Ti alloy (TLM), etc. designed by the authors. The alloy design methods, microstructural characteristics, mechanical properties, surface treatment methods and biocompatibility of the TLM alloy are discussed in detail, along with a concise description of the medical devices made from this alloy and the application examples. This book will appeal to researchers as well as students from different disciplines, including materials science, biology, medicine and engineering fields.
Nanomaterials for Electrocatalysis provides an overview of the different types of nanomaterials, design principles and synthesis protocols used for electrocatalytic reactions. The book is divided into four parts that thoroughly describe basic principles and fundamental of electrocatalysis, different types of nanomaterials used, and their electrocatalytic applications, limitations and future perspectives. As electrochemical systems containing nanomaterials, with relevance to experimental situation, yield better results, this book highlights new information and findings.
Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky provides unique information on the macroscopic properties of various composite materials and the mathematical techniques key to understanding their physical behaviors. The book is centered around the arguably monumental work of Leonid Filshtinsky. His last works provide insight on fracture in electromagnetic-elastic systems alongside approaches for solving problems in mechanics of solid materials. Asymptotic methods, the method of complex potentials, wave mechanics, viscosity of suspensions, conductivity, vibration and buckling of functionally graded plates, and critical phenomena in various random systems are all covered at length. Other sections cover boundary value problems in fracture mechanics, two-phase model methods for heterogeneous nanomaterials, and the propagation of acoustic, electromagnetic, and elastic waves in a one-dimensional periodic two-component material. |
You may like...
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
|