![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Polymer Nanocomposites Containing Graphene: Preparation, Properties and Applications provides detailed up-to-date information on the characterization, synthesis, processing, properties and application of these materials. Key topics that are covered in the book include: the methods of synthesis and preparation of graphene as well as different processes and methods of functionalization and modification of graphene for improving composite properties. The preparation techniques focus on which method is advantageous for getting improvements in properties along with their drawbacks. The structure and property relationships are also discussed in detail. The issues related to graphene dispersion in polymer matrices is also addressed as well as the use of graphene as reinforcement in thermoset resins. The different properties of the composites like mechanical, electrical, dielectric, thermal, rheological, morphology, spectroscopy, electronic, optical, and toxicity are reviewed from the geometrical and functional point of view. Applications cover electrical and electronic fields, flame and fire retardancy, structural, sensing and catalysis, membrane, in fuel cell and solar energy, hydrogen production, aerospace engineering, packaging, and biomedical/bioengineering fields. Up-to-date patents on graphene-polymer nanocomposites are also covered. Those working in graphene-based materials will benefit from the detailed knowledge presented in this book on graphene synthesis, composite preparation methods, and the related problems associated with them. The book will enable researchers to select the appropriate composite as per their respective field of application.
Thin Film Nanophotonics: Conclusions from the Third International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors (TFE3S) provides up-to-date coverage of the properties and photonic applications of nanostructured thin films, including discussions on optical waveguides, photonic lattices for wideband reflectors, polarizers, bandpass filters, meta surfaces, plasmonic resonance sensors, smart windows, optical switches, photovoltaics, and many more. This is an important reference source for materials scientists, engineers and physicists working in the areas of nanomaterials and photonics. New thin film applications such as thin-film topological insulators and 2D materials are gaining attention and growing exponentially, hence this book is an ideal reference on how engineered thin films for various nano-photonics applications present exponential growth in a wide array of areas.
Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast response time, high sensitivity, lower concentration of analytes, and smaller interaction distance between sensors and products. With the support of artificial intelligence (AI) tools such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems have become smarter. This is an important reference source for materials scientists and engineers who want to learn more about how nanoscale sensors can enhance smart manufacturing techniques and processes.
Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products.
The textile industry is focused in its search for alternative green fibres with the aim of providing high-quality products which are fully recyclable and biodegradable. Natural textile materials from renewable sources play an increasingly important role in the industry due to their unique properties and functionality over synthetic fibres, as well as their sustainability. Fundamentals of Natural Fibres and Textiles covers all the fundamental and basic information about natural fibres and textiles. Many different fibres are covered from their origin, through processing, properties, and applications. The latest methods for characterisation and testing of natural fibres are all addressed with reference to cutting-edge industry trends. This uniquely comprehensive approach to the topic provides the ideal entry point to natural fibres for textile and clothing scientists, engineers, designers, researchers, students, and manufacturers of such products.
Automotive Plastics and Composites: Materials and Processing is an essential guide to the use of plastic and polymer composites in automotive applications, whether in the exterior, interior, under-the-hood, or powertrain, with a focus on materials, properties, and processing. The book begins by introducing plastics and polymers for the automotive industry, discussing polymer materials and structures, mechanical, chemical, and physical properties, rheology, and flow analysis. In the second part of the book, each chapter is dedicated to a category of material, and considers the manufacture, processing, properties, shrinkage, and possible applications, in each case. Two chapters on polymer processing provide detailed information on both closed-mold and open-mold processing. The final chapters explain other key aspects, such as recycling and sustainability, design principles, tooling, and future trends. This book is an ideal reference for plastics engineers, product designers, technicians, scientists, and R&D professionals who are looking to develop materials, components, or products for automotive applications. The book also intends to guide researchers, scientists, and advanced students in plastics engineering, polymer processing, and materials science and engineering.
The textile industry is focused in its search for alternative green fibres with the aim of providing high-quality products which are fully recyclable and biodegradable. Natural textile materials from renewable sources play an increasingly important role in the industry due to their unique properties and functionality over synthetic fibres, as well as their sustainability. Antimicrobial Textiles from Natural Resources is an in-depth guide to the latest methods and applications of natural antimicrobial materials. A broad range of applications are addressed, from common to specialized applications, including many in the biomedical sector. This world-class collection of contributors write from a range of disciplinary backgrounds, providing important insights from textile science and technology, materials science, chemical engineering, and biomedical engineering. Advice and proposed solutions are presented in a rigorous and practical way, drawing on results and case studies obtained from academic and industrial laboratories worldwide.
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics.
Hybrid Atomic-Scale Interface Design for Materials Functionality covers a broad range of atomistic, meso and macro scale computational methodologies, including multiphase (hybrid) materials constructs for tailoring structural, thermal and electrical properties. As future materials are expected to perform with increasing efficiency in complex and dynamic environments hybrid materials design, in contrast to monolithic concepts, they are a cost-effective alternative. Taking materials hybridization at smaller scale, even at atomic scale, offers exceedingly high-payoff opportunities for optimizing materials functionality at reduced material consumption and even reduced qualification costs (eliminates many costly component and system level qualification tests).
Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed.
Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering presents quantitative background on new polysaccharide nanocomposites in a clear and logical way, highlighting the most exciting applications in gene delivery and tissue engineering and their progress. The book focuses on the different types of polysaccharide nanocomposites for gene delivery and tissue engineering and covers polysaccharide hydrogels for tissue engineering and polysaccharide magnetic nanocomposites for gene delivery. Chapters cover various nanocomposites presented in twenty-one separate chapters. This book will be of great interest to all those researching the development and applications of polysaccharide-based nanocomposites for modeling. As polysaccharide-based nanocomposites promise cutting-edge applications in gene delivery and tissue engineering, with their development at the forefront of modern medicine, this book is a welcome title on this exciting science.
Waste and By-Products in Cement-Based Materials: Innovative Sustainable Materials for a Circular Economy covers various recycled materials, by-products and wastes that are suitable for the manufacture of materials within the spectrum of so-called cement-based materials (CBM). Sections cover wastes for replacement of aggregates in CBM, focus on the application of wastes for the replacement of clinker and mineral additions in the manufacture of binders, discuss the optimization process surrounding the manufacture of recycled concrete and mortars, multi-recycling, advanced radiological studies, optimization of self-compacting concrete, rheology properties, corrosion prevention, and more. Final sections includes a review of real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others, as well as a proposal of new regulations to promote the use of waste in the manufacture of CBM.
Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field.
Energy Storage Devices for Renewable Energy-Based Systems: Rechargeable Batteries and Supercapacitors, Second Edition is a fully revised edition of this comprehensive overview of the concepts, principles and practical knowledge on energy storage devices. The book gives readers the opportunity to expand their knowledge of innovative supercapacitor applications, comparing them to other commonly used energy storage devices. With new application case studies and definitions, this resource will strengthen your understanding of energy storage from a practical, applications-based point-of-view without requiring detailed examination of underlying electrochemical equations. Users will learn about various design approaches and real-time applications of ESDs. Electronic engineering experts and system designers will find this book useful to deepen their understanding on the application of electronic storage devices, circuit topologies, and industrial device data sheets to develop new applications. The book is also intended to be used as a textbook for masters and doctoral students who want to enhance their knowledge and understanding the concepts of renewable energy sources and state-of-the-art ESDs.
Nanotechnology in Conservative Dentistry provides a detailed review of the use of nanotechnology in conservative dentistry, from diagnosis and restorative materials, through to tissue engineering and regeneration. This book covers fundamental topics in the field of conservative dentistry, including caries therapy, dentin reconstruction, pulp protection and more; each chapter reviews and discusses how nanotechnology can be implemented as a novel approach to traditional conservative dentistry techniques, exploring the many uses and advantages of this fast-growing technology. Various nanobiomaterials and technologies are covered, as well as assessment of the biocompatibility and toxicological risks of utilizing nanotechnology in dentistry. Nanotechnology in Conservative Dentistry will help dentists and materials science academics alike, understand the potential of nanotechnology in dentistry, building on and going beyond traditional concepts and techniques in this field.
Biomaterials have existed for millennia as mechanical replacement structures following disease or injury. Biomaterial design has changed markedly from structural support with an "inert" immune profile as the primary objective to designs that elicit an integrative local tissue response and a pro-repair immune cell phenotype. Immunomodulatory Biomaterials: Regulating the Immune Response with Biomaterials to Affect Clinical Outcome offers a single, comprehensive reference on biomaterials for modulation of the host response, for materials scientists, tissue engineers and those working in regenerative medicine. This book details methods, materials and strategies designed to regulate the host immune response following surgical implantation and thus facilitate specific local cell infiltration and tissue deposition. There has been a dramatic transformation in our understanding of the role of the immune system, both innate and adaptive; these changes include recognition of the plasticity of immune cells, especially macrophages, cross-talk between the immune system and stem cells, and the necessity for in situ transition between inflammatory and regulatory immune cell phenotypes. The exploitation of these findings and the design and manufacture of new biomaterials is occurring at an astounding pace. There is currently no book directed at the interdisciplinary principles guiding the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response. The challenge for academia, industry, and regulatory agencies to encourage innovation while assuring safety and maximizing efficacy has never been greater. Given the highly interdisciplinary requirements for the design, manufacture and use of immunomodulatory biomaterials, this book will prove a useful single resource across disciplines.
Design and Manufacturing of Plastics Products: Integrating Conventional Methods and Innovative Technologies brings together detailed information on design, materials selection, properties, manufacturing, and the performance of plastic products, incorporating the utilization of the latest novel techniques and additive manufacturing technologies. The book integrates the design of molded products and conventional manufacturing and molding techniques with recent additive manufacturing techniques to produce performant products and cost-effective tools. Key areas of innovation are explained in detail, including hybrid molds, the integration of processing options with product properties and performance, and sustainability factors such as eco-design strategies, recycling, and lifecycle assessment. Other sections cover the development of plastics products, including design methodologies, design solutions specific to plastics, and design for re-use, as well as manufacturing and performance, with an emphasis on thermoplastic molding techniques, recent advances on plastics tooling, and the appraisal of the influence of processing options on product performance. This is a valuable resource to plastics engineers, design engineers, mold makers, and product or part designers across industries. It will also be of interest to researchers and advanced students in plastics engineering, polymer science, additive manufacturing and mechanical engineering.
Includes details of the fundamental phenomenological theories of solar cells, Li ion/ Li-air/Li-S batteries, fuel cells and their energy storage mechanisms. Discusses properties of various energy materials in addition to their device operation and evaluation.
Bioinspired and Biomimetic Materials for Drug Delivery delves into the potential of bioinspired materials in drug delivery, detailing each material type and its latest developments. In the last decade, biomimetic and bioinspired materials and technology has garnered increased attention in drug delivery research. Various material types including polymer, small molecular, protein, peptide, cholesterol, polysaccharide, nano-crystal and hybrid materials are widely considered in drug delivery research. However, biomimetic and bioinspired materials and technology have shown promising results for use in therapeutics, due to their high biocompatibility and reduced immunogenicity. Such materials include dopamine, extracellular exosome, bile acids, ionic liquids, and red blood cell. This book covers each of these materials in detail, reviewing their potential and usage in drug delivery. As such, this book will be a great source of information for biomaterials scientists, biomedical engineers and those working in pharmaceutical research.
Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries.
Agri-Waste and Microbes for Production of Sustainable Nanomaterials assesses the most recent trends used to produce bionanomaterials from agricultural waste and microorganisms. The book covers the green synthesis of various nanomaterials using microorganisms and agricultural waste, including the synthesis and characterization of green nanomaterials, the production of nanomaterials from agri-waste, including metallic, copper, silica, cellulose, nanopolymers and nano/micro plastics, and biological methods such as agricultural and microbial synthesis of metallic/metal oxide, magnetic, silver, copper, nanomaterials and nanonutrients. This is an important reference source for plant scientists, materials scientists and environmental scientists who want to understand this new generation of sustainable nanomaterials. The synthesis of nanocellulose materials from agri-wastes is an emerging alternative for waste treatment methods, developing new biosensors and antimicrobial agents. Silicon nanoparticles are an additional ingredient for the improvement of crop yields. With recent advances in nanomaterials synthesis performance and the discovery of their biomedical, environmental and agricultural applications, it is hoped that the implementation of these methods will be used at large-scale for industrial applications in different sectors.
Emerging Nanotechnologies for Renewable Energy offers a detailed overview of the benefits and applications of nanotechnology in the renewable energy sector. The book highlights recent work carried out on the emerging role of nanotechnology in renewable energy applications, ranging from photovoltaics, to battery technology and energy from waste. Written by international authors from both industry and academia, the book covers topics including scaling up from laboratory to industrial scale. It is a valuable resource for students at postgraduate and advanced undergraduate levels, researchers in industry and academia, technology leaders, and policy and decision-makers in the energy and engineering sectors.
Fully Depleted Silicon-On-Insulator provides an in-depth presentation of the fundamental and pragmatic concepts of this increasingly important technology. There are two main technologies in the marketplace of advanced CMOS circuits: FinFETs and fully depleted silicon-on-insulators (FD-SOI). The latter is unchallenged in the field of low-power, high-frequency, and Internet-of-Things (IOT) circuits. The topic is very timely at research and development levels. Compared to existing books on SOI materials and devices, this book covers exhaustively the FD-SOI domain. Fully Depleted Silicon-On-Insulator is based on the expertise of one of the most eminent individuals in the community, Dr. Sorin Cristoloveanu, an IEEE Andrew Grove 2017 award recipient "For contributions to silicon-on-insulator technology and thin body devices." In the book, he shares key insights on the technological aspects, operation mechanisms, characterization techniques, and most promising emerging applications. Early praise for Fully Depleted Silicon-On-Insulator "It is an excellent written guide for everyone who would like to study SOI deeply, specially focusing on FD-SOI." --Dr. Katsu Izumi, Formerly at NTT Laboratories and then at Osaka Prefecture University, Japan "FDSOI technology is poised to catch an increasingly large portion of the semiconductor market. This book fits perfectly in this new paradigm [...] It covers many SOI topics which have never been described in a book before." --Professor Jean-Pierre Colinge, Formerly at TSMC and then at CEA-LETI, Grenoble, France "This book, written by one of the true experts and pioneers in the silicon-on-insulator field, is extremely timely because of the growing footprint of FD-SOI in modern silicon technology, especially in IoT applications. Written in a delightfully informal style yet comprehensive in its coverage, the book describes both the device physics underpinning FD-SOI technology and the cutting-edge, perhaps even futuristic devices enabled by it." --Professor Alexander Zaslavsky, Brown University, USA "A superbly written book on SOI technology by a master in the field." --Professor Yuan Taur, University of California, San Diego, USA "The author is a world-top researcher of SOI device/process technology. This book is his masterpiece and important for the FD-SOI archive. The reader will learn much from the book." --Professor Hiroshi Iwai, National Yang Ming Chiao Tung University, Taiwan From the author "It is during our global war against the terrifying coalition of corona and insidious computer viruses that this book has been put together. Continuous enlightenment from FD-SOI helped me cross this black and gray period. I shared a lot of myself in this book. The rule of the game was to keep the text light despite the heavy technical content. There are even tentative FD-SOI hieroglyphs on the front cover, composed of curves discussed in the book." |
You may like...
Strategy, Policy, Practice, and…
Fernando Almaraz Menendez, Richa Goel, …
Hardcover
R5,306
Discovery Miles 53 060
Redemption - 2017 Tales from the Writers…
Bernie Dowling, Vera M Murray, …
Hardcover
R788
Discovery Miles 7 880
Grit - Why Passion & Resilience Are The…
Angela Duckworth
Paperback
(3)
Handbook of Research on Estimation and…
Vardan Mkrttchian, Alexander Bershadsky, …
Hardcover
R5,846
Discovery Miles 58 460
|