![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
In Advanced ULSI interconnects - fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous "Moore's law" which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.
Biomedical Composites, Second Edition, provides revised, expanded, and updated content suitable for those active in the biomaterials and bioengineering field. Three new chapters cover modeling of biocomposites, 3D printing of customized scaffolds, and constructs and regulatory issues. Chapters from the first edition have been revised in order to provide up-to-date, comprehensive coverage of developments in the field. Part One discusses the fundamentals of biocomposites, with Part Two detailing a wide range of applications of biocomposites. Chapters in Part Three discuss the biocompatibility, mechanical behavior, and failure of biocomposites, while the final section looks at the future for biocomposites. Professor Luigi Ambrosio is the Director of the Institute for Composite and Biomedical Materials, Italy. He is a renowned scientist with expertise in biomedical composites and has published over 150 papers in international scientific journals and books, 16 patents, and over 250 presentations at international and national conferences.
This book provides details on the innovations made to achieve sustainability in manufacturing. It highlights the trends of current progress in research and development being done to achieve overall sustainability in manufacturing technology. Green-EDM, Hybrid machining, MQL assisted machining, sustainable casting, welding, finishing and casting, energy- and resource-efficient manufacturing are some of the important topics discussed in this book.
This volume covers experimental and theoretical advances on the relationship between composition, structure and macroscopic mechanical properties of novel hydrogels containing dynamic bonds. The chapters of this volume focus on the control of the mechanical properties of several recently discovered gels with the design of monomer composition, chain architecture, type of crosslinking or internal structure. The gels discussed in the different chapters have in common the capability to dissipate energy upon deformation, a desired property for mechanical toughness, while retaining the ability to recover the properties of the virgin material over time or to self-heal when put back in contact after fracture. Some chapters focus on the synthesis and structural aspects while others focus on properties or modelling at the continuum or mesoscopic scale. The volume will be of interest to chemists and material scientists by providing guidelines and general structure-property considerations to synthesize and develop innovative gels tuned for applications. In addition it will provide physicists with a better understanding of the role of weak interactions between molecules and physical crosslinking on macroscopic dissipative properties and self-healing or self-recovering properties.
The 20th Century World has been transformed by the discovery and
use of plastics. Today plastic materials are used in a wide variety
of applications, from building and construction to packaging, from
sports equipment to transportation. The vast number of plastics
materials discovered over the past 40 years and their wide range of
properties make them uniquely suited to a very broad spectrum of
applications. This combination of the successful utilisation of the materials
and the number of types of material available has led to the growth
of an array of technical terms within the field. The "Dictionary"
is intended as a reference tool for readers to negotiate these
terms. The main part of the "Technical Dictionary of Plastics
Materials" presents a comprehensive set of extended definitions of
technical terms relating to all facts of the materials aspect of
plastics technology. The definitions cover the nature of plastics
materials, their composition (including relevent non-polymeric
componants and additives, such as stabilisers, fillers, colourants,
etc), their properties (including methods of property
determination, testing, and evaluation), their applications, and
their handling and behaviour in processing. In many cases reference
is given to the relevant technical standards from the International
(ISO), British (BSI), and American (ASTM) standards. In addition to the main part of the "Dictionary" containing the
definitions there are two further sections. The first gives
explanations of the abbreviated terms (letter symbols) used for the
parent polymer and for the other constituents of plastics
materials, while the second identifies the trade names of a number
of plastics materials and their components.
This book presents novel findings concerning the systems, materials and processes used in solar energy conversion in communities. It begins with the core resource - solar radiation - and discusses the restrictions on the wide-scale implementation of conversion systems imposed by the built environment, as well as potential solutions. The book also describes efficient solar energy conversion in detail, focusing on heat and electricity production in communities and water reuse. Lastly, it analyzes the concept of sustainable communities, presenting examples from around the globe, along with novel approaches to improving their feasibility and affordability. Though chiefly intended for professionals working in the field of sustainability at the community level, the book will also be of interest to researchers, academics and doctoral students.
Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers in detail the mechanisms of thermoelectricity, thermal transport, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in low-dimensional junctions in graphene and its allotropes, transition metal dichalcogenides and boron nitride. This book aims to show readers how to improve thermoelectric transducer efficiency in graphene and other nanomaterials. The book describes basic ingredients of such activity, allowing readers to gain a greater understanding of fundamental issues related to the heat transport and the thermoelectric phenomena of nanomaterials. It contains a thorough analysis and comparison between theory and experiments, complemented with a variety of practical examples.
The "greening" of industry processes - i.e., making them more sustainable - is a popular and often lucrative trend which has seen increased attention in recent years. Green Chemical Processes, the 2nd volume of Green Chemical Processing, covers the hot topic of sustainability in chemistry with a view to education, as well as considering corporate and environmental interests, e.g. in the context of energy production. The diverse team of authors allows for a balance between these different, but interconnected perspectives. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
This volume contains papers presented in the third international symposium titled Fatigue of Materials: Advances and Emergences in Understanding held during the Materials Science and Technology 2014 meeting. The book contains contributions from engineers, technologists, and scientists from academia, research laboratories, and industries. The papers are divided into six topical areas: Session 1: Aluminum Alloys Session 2: Ferrous Materials I Session 3: Ferrous Materials II Session 4: Composite Materials Session 5: Advanced Materials Session 6: Modeling The papers cover a broad spectrum of topics that represent the truly diverse nature of the subject of fatigue as it relates to the world of materials.
This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.
Characterization of Polymeric Biomaterials presents a comprehensive introduction on the topic before discussing the morphology and surface characterization of biomedical polymers. The structural, mechanical, and biological characterization is described in detail, followed by invaluable case studies of polymer biomaterial implants. With comprehensive coverage of both theoretical and experimental information, this title will provide scientists with an essential guide on the topic of these materials which are regularly used for clinical applications, such as implants and drug delivery devices. However, a range of novel polymers and the development and modification of existing medical polymers means that there is an ongoing need to satisfy particular design requirements. This book explains the critical and fundamentals methods to characterize polymer materials for biomedical applications.
This volume describes the increasing role of "in situ" optical
diagnostics in thin film processing for applications ranging from
fundamental science studies to process development to control
during manufacturing. The key advantage of optical diagnostics in
these applications is that they are usually noninvasive and
nonintrusive. Optical probes of the surface, film, wafer, and gas
above the wafer are described for many processes, including plasma
etching, MBE, MOCVD, and rapid thermal processing. For each optical
technique, the underlying principles are presented, modes of
experimental implementation are described, and applications of the
diagnostic in thin film processing are analyzed, with examples
drawn from microelectronics and optoelectronics. Special attention
is paid to real-time probing of the surface, to the noninvasive
measurement of temperature, and to the use of optical probes for
process control.
Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites presents a concise overview of non-conventional construction materials with a strong focus on alternative inorganic bonded fiber composites and their applications as construction components. It outlines the processing and characterization of non-conventional cementitious composites, which will be of great benefit to both academic and industrial professionals interested in research, development, and innovation on inorganic bonded fiber composites. The book gives a comprehensive review of the innovative research associated with building components based on inorganic bonded composites. Exploring both natural fibers as reinforcing elements and alternative inorganic binders based on agricultural and industrial wastes, this book also considers the performance and applications of fibrous composites as construction materials and components.
This book covers current advances and practices in machining fibre-reinforced polymer composites under various conventional and nonconventional processes. It presents recent research and practices for effective and efficient machining of difficult-to-cut material, providing the technological 'know-how' on delamination-free of drilling, milling, trimming, and other cutting processes on fibre-reinforced polymer composites. It also guides the reader on the selection of optimum machining parameters, tool materials, as well as tool geometry. This book is of interest to academicians, students, researchers, practitioners, and industrialists working in aerospace, automotive, marine, and construction industries.
Electrospinning, an electro-hydrodynamic process, is a versatile and promising platform technology for the production of nanofibrous materials for tissue engineering and biomedical applications. Electrospun Materials for Tissue Engineering and Biomedical Applications, examines the rapid development of electrospun materials for use in tissue engineering and biomedical applications. With a strong focus on fundamental materials science and engineering, this book also looks at successful technology transfers to the biomedical industry, highlighting biomedical products already on the market as well as the requirements to successfully commercialize electrospun materials for potential use in tissue engineering and biomedical areas. This book is a valuable resource for materials and biomedical scientists and engineers wishing to broaden their knowledge on the tissue engineering and biomedical applications of electrospun fibrous materials.
The book introduces fundamentals of 3D printing with light, photoinitiating system for 3D printing as well as resins. Plenty of applications, trends and prospects are also discussed, which make the book an essential reference for both scientists and industrial engineers in the research fields of photochemistry, polymer chemistry, rapid prototyping and photopolymerization.
This book introduces the fundamentals and principles of laser shock peening (LSP) for aeronautical materials. It focuses on the innovation in both theory and method related to LSP-induced gradient structures in titanium alloys and Ni-based alloys which have been commonly used in aircraft industries. The main contents of the book include: the characteristics of laser shock wave, the formation mechanism of gradient structures and the strengthening-toughing mechanism by gradient structures. The research has accumulated a large amount of experimental data, which has proven the significant effectiveness of LSP on the improvement of the fatigue performance of metal parts, and related findings have been successfully applied in aerospace field. This book could be used by the researchers who work in the field of LSP, mechanical strength, machine manufacturing and surface engineering, as well as who major in laser shock wave and materials science.
Fiber Technology for Fiber-Reinforced Composites provides a detailed introduction to fiber reinforced composites, explaining the mechanics of fiber reinforced composites, along with information on the various fiber types, including manufacturing of fibers (starting from monomers and precursors), fiber spinning techniques, testing of fibers, and surface modification of fibers. As material technologies develop, composite materials are becoming more and more important in transportation, construction, electronics, sporting goods, the defense industry, and other areas of research. Many engineers working in industry and academics at universities are trying to manufacture composite materials using a limited number of fiber types with almost no information on fiber technology, fiber morphology, fiber properties, and fiber sizing agents. This book fills that gap in knowledge.
Morphological, Compositional, and Shape Control of Materials for Catalysis, Volume 177, the latest in the Studies in Surface Science and Catalysis series, documents the fast-growing developments in the synthesis, characterization, and utilization of nanostructures for catalysis. The book provides essential background on using well-defined materials for catalysis and presents exciting new paradigms in the preparation and application of catalytic materials, with an emphasis on how structure determines catalytic properties. In addition, the book uniquely features discussions on the future of the field, with ample space for future directions detailed in each chapter.
This book discusses the latest developments of the synthesis, preparation, characterization, and applications of nano/microstructure-based materials in biomedical and energetic fields. It introduces several popular approaches to fabricating these materials, including template-assisted fabrication, electrospinning of organic/inorganic hybrid materials, biomineralization-mediated self-assembly, etc. The latest results in material evaluation for targeted applications are also presented. In particular, the book highlights the latest advances and future challenges in polymer nanodielectrics for energy storage applications. As such, it offers a valuable reference guide for scholars interested in the synthesis and evaluation of nano/microstructure-based materials, as well as their biomedical and energetic applications. It also provides essential insights for graduate students and scientists pursuing research in the broad fields of composite materials, polymers, organic/inorganic hybrid materials, nano-assembly, etc.
This book details zeolites, their structures and the parameters that influence their synthesis, providing a new and actual perspective of this field. Following this, the authors show different processes used to synthesize zeolites using residues, natural materials, and other eco-friendly materials such as raw powder glass, clays, aluminum cans, diatomites, rice ashes or coal ashes. Finally, this book gives the reader a wide range of different synthesis methods that they can be applied to several industrial processes.
Conducting and semiconducting (conjugated) polymers have a unique set of properties, combining the electronic properties of metals and semiconductors with the processing advantages and mechanical properties of polymers. Now, thirty-five years after their discovery, metallic conducting polymers have been demonstrated in the laboratory to have electrical conductivities approaching that of copper, and mechanical strengths exceeding that of steel, a remarkable achievement. A wide variety of electrical and optical devices have been demonstrated using semiconducting polymers. Light-emitting devices have been made which are as bright as fluorescent lamps at applied voltages of only a few volts; photovoltaic solar energy conversion using conjugated polymer composites is in industrial production; conjugated polymer transistors, circuits and chips have been demonstrated. Indeed, semiconducting and metallic polymers can be thought of as electronic 'inks'. The advances in printing technology (ink-jet printing, off-set printing, etc) combined with the science and technology of conducting polymers will revolutionize the way in which electronic devices are manufactured. In addition, semiconducting and metallic polymers can be used in applications which require special mechanical properties such as flexibility. The field of semiconducting and conducting polymers has become one of the most attractive areas of interdisciplinary materials science and technology. Ranging from physics, chemistry, electrical and electronic engineering to the optical sciences, this field covers a wide range of competences and interdisciplinary knowledge.
Wood material has acquired great importance due to its short supply and increasing environmental awareness amongst users and manufacturers. However, its use as an engineering material requires consistent research developments in order to provide accurate responses to industrial processing problems. Research Developments in Wood Engineering and Technology examines the latest research advances and technological developments for wood material as an engineering product and the innovation it provides for environmentally-friendly materials. This reference source is essential for academics, engineers, students, and professionals involved in the multidisciplinary fields of wood science, mechanical, industrial, and manufacturing engineering. |
![]() ![]() You may like...
Artificial Intelligence for Signal…
Abhinav Sharma, Arpit Jain, …
Hardcover
R4,498
Discovery Miles 44 980
Teaching Science - Foundation To Senior…
Robyn Gregson, Marie Botha
Paperback
R610
Discovery Miles 6 100
Oracle Solaris and Veritas Cluster : An…
Vijay Shankar Upreti
Paperback
R2,049
Discovery Miles 20 490
ATI TEAS Secrets Study Guide - TEAS 7…
Matthew Bowling
Paperback
Handbook of Computer Vision Algorithms…
Joseph N. Wilson, Gerhard X. Ritter
Hardcover
R6,761
Discovery Miles 67 610
|