![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues.
For many years it was believed that translational symmetry would be the fundamental property of crystal structures of natural and synthetic compounds. It is now recognised that many compounds crystallise without translational symmetry of their atomic structures. "Incommensurate Crystallography" gives a comprehensive account of the superspace theory for the description of crystal structures and symmetries of these incommensurately modulated crystals and incommensurate composite crystals. It thus provides the necessary background for quantitative analysis of incommensurate crystals by methods in Solid State Chemistry and Solid State Physics. The second half of "Incommensurate Crystallography" is devoted to crystallographic methods of structural analysis of incommensurate compounds. Thorough accounts are given of the diffraction by incommensurate crystals, the choice of parameters in structure refinements, and the use of superspace in analysing crystal structures. The presentation of methods of structure determination includes modern methods like the Maximum Entropy Method and Charge Flipping.
Covering the latest technologies, Nanotechnology in eco-efficient construction provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction. The book contains a special focus on applications concerning concrete and cement, as nanotechnology is driving significant development in concrete technologies. The new edition has 14 new chapters, including 3 new parts: Mortars and concrete related applications; Applications for pavements and other structural materials; and Toxicity, safety handling and environmental impacts. Civil engineers requiring an understanding of eco-efficient construction materials, as well as researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry will find this updated reference to be highly valuable.
This new book clarifies and quantifies many of the technical interactions in the process. It distinguishes itself from other books on the subject by being a seamless story of the advanced aspects of the rotational molding process. There are seven chapters within the book. The U.S. market for rotational molding products was one billion pounds in the year 2000. The growth of the rotational molding industry has grown at 10 to 15% per year. With this growth has come an increasing need for details on the complex, technical aspects of the process. Key Features: -Clarifies and quantifies many of the technical interactions in the rotational molding process. -Seamless story of the advanced aspects of the process.
This is the first book that can be considered a textbook on thin
film science, complete with exercises at the end of each chapter.
Ohring has contributed many highly regarded reference books to the
AP list, including Reliability and Failure of Electronic Materials
and the Engineering Science of Thin Films. The knowledge base is
intended for science and engineering students in advanced
undergraduate or first-year graduate level courses on thin films
and scientists and engineers who are entering or require an
overview of the field.
Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry.
The field of nanoscience continues to grow at an impressive rate and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience Volume 5 provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Coverage includes diverse topics such as controlling chemistry of gold nanoparticles to dictate their cellular interactions, uptake and toxicity, use of metal complexes to prepare 2-D materials and nanoscale porphyrin superstructures. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.
Nanomaterials for Magnetic and Optical Hyperthermia Applications focuses on the design, fabrication and characterization of nanomaterials (magnetic, gold and hybrid magnetic-gold nanoparticles) for in vitro and in vivo hyperthermia applications, both as standalone and adjuvant therapy in combination with chemotherapy. The book explores the potential for more effective cancer therapy solutions through the synergistic use of nanostructured materials as magnetic and optical hyperthermia agents and targeted drug delivery vehicles, while also discussing the challenges related to their toxicity, regulatory and translational aspects. In particular, the book focuses on the design, synthesis, biofunctionalization and characterization of nanomaterials employed for magnetic and optical hyperthermia. This book will be an important reference resource for scientists working in the areas of biomaterials and biomedicine seeking to learn about the potential of nanomaterials to provide hyperthermia solutions.
This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.
This monograph provides a concise overview of the main theoretical and numerical tools to solve homogenization problems in solids with finite elements. Starting from simple cases (linear thermal case) the problems are progressively complexified to finish with nonlinear problems. The book is not an overview of current research in that field, but a course book, and summarizes established knowledge in this area such that students or researchers who would like to start working on this subject will acquire the basics without any preliminary knowledge about homogenization. More specifically, the book is written with the objective of practical implementation of the methodologies in simple programs such as Matlab. The presentation is kept at a level where no deep mathematics are required.
Synthesis of Inorganic Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems.
Performance and Improvement of Green Construction Projects: Management Strategies and Innovations expertly explains the specific characteristics and management approaches of green construction projects using in-depth examples that compare presented tactics to conventional construction projects. The book provides a holistic view on management strategies and innovations, focusing on the assessment and improvement of green construction projects and how to manage performance with respect to cost, scheduling, quality, safety, risk, productivity and leadership development.
Thermoplastics and Thermoplastic Composites, Third Edition bridges the technology and business aspects of thermoplastics, providing a guide designed to help engineers working in real-world industrial settings. The author explores the criteria for material selection, provides a detailed guide to each family of thermoplastics, and explains the various processing options for each material type. More than 30 families of thermoplastics are described with information on their advantages and drawbacks, special grades, prices, transformation processes, applications, thermal behavior, technological properties (tenacity, friction, dimensional stability), durability (ageing, creep, fatigue), chemical and fire behavior, electrical properties, and joining possibilities. In this third edition, standards and costs have been updated for all materials, and more information on topics such as bioplastics, 3D printing and recycling have been added. In addition, an entirely new chapter on the concept of 'Industry 4.0' has been added, with guidance and suggestions on the incorporation of virtualization, connectivity, and automation into the plastics engineering process to reduce materials and processing failure.
This book discusses advanced Small Modular Reactors (SMRs) as a way to provide safe, clean, and affordable nuclear power options. The advanced SMRs currently under development in the U.S. represent a variety of sizes, technology options and deployment scenarios. These advanced reactors, envisioned to vary in size from a couple megawatts up to hundreds of megawatts can be used for power generation, process heat, desalination, or other industrial uses. In-depth chapters describe how advanced SMRs offer multiple advantages, such as relatively small size, reduced capital investment, location flexibility, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages. The authors present a thorough examination of the technology and defend methods by which the new generation of nuclear power plants known as GEN-IV can safely be used as an efficient source of renewable energy. Provides a unique and innovative approach to the implementation of Small Modular Reactor as part of GEN-IV technology; Discusses how Small Modular Reactors (SMRs) can deliver a viable alternative to Nuclear Power Plants (NPPs); Presents an argument defending the need for nuclear power plant as a source of energy, its efficiency and cost effectiveness, as well as safety related issues.
This book discusses how to identify the level of adhesion in layered systems made of cement composites using a multi-scale approach based on experimental and numerical analyses. In particular, it explains 1. The suitability of previously used artificial intelligence tools and learning algorithms for reliable assessment of the level of adhesion of layered systems made of cement composites based on non-destructive tests 2. The development of the methodology for a reliable non-destructive evaluation of the level of adhesion in newly constructed layered systems of any overlay thickness and in existing layered systems made of cement composites 3. How to determine whether to assess the level of adhesion of the layered systems, and discusses the amplitude parameters, spatial, hybrid and volume parameters describing the morphology of the concrete substrate surface in the mesoscale 4. How to ascertain whether the effective surface area of the existing concrete substrate and the contribution of the exposed aggregate on this substrate, determined in mesoscale, have an impact on the level of adhesion of layered systems made of cement composites 5. The assessment of the structure of air pores in the microscale and the chemical composition of the cement composite on the nanoscale in the interphase zone together with the determination of their impact on the level of adhesion of layered systems made of cement composites 6. The development of an effective methodology for testing the level of adhesion of layered systems made of cement composites in a multi-scale approach, including the research methods and descriptors used.
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.
Chemical Resistance of Commodity Thermoplastics provides a comprehensive, cross-referenced compilation of chemical resistance data that explains the effect of thousands of reagents, the environment and other exposure media on the properties and characteristics of thermosets- plastics which are used in a range of applications. Specifically, the resistance data in this book covers the following materials, allyl, epoxy, unsaturated polyester resin, unsaturated polyurethane resin, vinyl ester resin, furan resin, polyaminobismaleimide, acrylics, polycyanurates and filled/reinforced thermosets. A huge range of exposure media are included, from aircraft fuel, to alcohol, corn syrup, hydrochloric acid and salt to silver acetate. This book is a must-have reference for engineers and scientists designing and working with thermosets in environments where they come into contact with corrosive or reactive substances, from automotive and aerospace, to coatings, adhesives, electrical insulation, fittings and other applications.
This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.
The authors provide new insights into the theoretical and applied aspects of metal electrodeposition. The theory largely focuses on the electrochemistry of metals. Details on the practice discuss the selection and use of metal coatings, the technology of deposition of metals and alloys, including individual peculiarities, properties and structure of coatings, control and investigations. This book aims to acquaint advanced students and researchers with recent advances in electrodeposition while also being an excellent reference for the practical electrodeposition of metals and alloys.
This book reports on a comprehensive analytical, experimental and numerical study on the flexural response of post-tensioned masonry walls under in-plane loads. It explores an important mechanism in this new generation of structural walls, called "Self-centering". This mechanism can reduce residual drifts and structural damage during earthquake ground motion, and is particularly favorable for structures which are designed for immediate occupancy performance levels. The book reports on the development and verification of a finite element model of post-tensioned masonry walls. It describes a detailed parametric study to predict the strength of post-tensioned masonry walls. New design methodologies and expressions are developed to predict the flexural strength and force-displacement response of post-tensioned masonry. Experimental study is carried out to better understand the behavior of post-tensioned masonry walls and also to evaluate the accuracy of the proposed design procedure and expressions. The book also includes an introduction to current research on unbounded post-tensioned masonry walls, together with an extensive analysis of previously published test results.
Today, air-to-surface vessel (ASV) radars, or more generally airborne maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW-anti-surface warfare) and for hunting submarines (ASW-anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U-boats. This book describes the ASV radars developed in the UK and used by RAF Coastal Command during WWII for long-range maritime surveillance. |
You may like...
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
|