![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
This book comprehensively summarizes important aspects of research in the active field of lignocellulosic (polymer) composites, including polymer materials from or containing cellulose, hemicellulose and lignin. It describes how these materials can be produced from forest products and natural fibers from sources such as jute, flax, sisal, and many more, and even from agricultural residues (like wheat straw, corn stover, or sugarcane bagasse). In times of high demand for renewable green materials, lignocellulosic materials from organic matter produced by trees, shrubs and agricultural crops present a highly attractive feedstock. The international authors explain different treatment and fabrication methods for the production of lignocellulosic materials. Other chapters address the properties of these green materials or illustrate specific applications, ranging from food packaging and household products to adsorbents and even conductive polymer composites. In this way, this book offers a broad and comprehensive overview over the entire field of lignocellulosic composite materials.
Industrial Cutting of Textile Materials, Second Edition, is a comprehensive guide to cutting room operations, offering step-by-step information on processes, technologies and best practice. This new edition is updated to present the latest advances in automated cutting technology, including advanced spreading methods and machines, advanced knife cutting systems, and pattern matching methods processing garment, home and technical textiles. Drawing on her extensive practical experience, the author begins by reviewing initial steps, such as unloading, sorting and quality control of materials, before discussing subsequent operations, including lay planning and marker making, manual and automated spreading and cutting, fusing of cut components, and final work operations such as sorting cut components for further joining. The book also covers manual and advanced automated marker making, spreading and cutting methods for more intricate fabrics, such as striped fabrics and fabrics with check, motif and border patterns, narrow lace and fabrics with pile. With essential information on cutting room operations and best practice, this book provides engineers, technologists and managers with the knowledge they need to maximize accuracy and efficiency, to control production processes effectively, and to improve product quality. The book also enables academics and students engaged in the field of textile and clothing technology to gain a solid understanding of cutting room procedures.
Aircraft Sustainment and Repair is a one-stop-shop for practitioners and researchers in the field of aircraft sustainment, adhesively bonded aircraft joints, bonded composites repairs, and the application of cold spray to military and civil aircraft. Outlining the state-of-the-art in aircraft sustainment, this book covers the use of quantitative fractography to determine the in-service crack length versus flight hours curve, the effect of intergranular cracking on structural integrity and the structural significance of corrosion. The book additionally illustrates the potential of composite repairs and SPD applications to metallic airframes.
Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation presents a concise overview of the most promising nanomaterials functionalized with ligands for biomedical applications. The first section focuses on current strategies for identifying biological targets and screening of ligand to optimize anchoring to nanomaterials, providing the foundation for the remaining parts. Section Two covers specific applications of functionalized nanomaterials in therapy and diagnostics, highlighting current practice and addressing major challenges, in particular, case studies of successfully developed and marketed functionalized nanomaterials. The final section focuses on regulatory issues and clinical translation, providing a legal framework for their use in biomedicine. This book is an important reference source for worldwide drug and medical devices policymakers, biomaterials scientists and regulatory bodies.
This book provides a general introduction to nanogels, and designs of various stimuli-sensitive nanogels that are able to control drug release in response to specific stimuli. Nanogels are three-dimensional nanosized networks that formed by physically or chemically crosslinking polymers. They have highly interesting properties such as biocompatibility, high stability, particle size adjustment, drug loading capability and modification of the surface for active targeting. They can respond to stimuli which results in the controlled release of drug and targeting of the site.
This book presents the statistical theory of complex wave scattering and quantum transport in physical systems which have chaotic classical dynamics, as in the case of microwave cavities and quantum dots, or which possess quenched randomness, as in the case of disordered conductors - with an emphasis on mesoscopic fluctuations. The statistical regularity of the phenomena is revealed in a natural way by adopting a novel maximum-entropy approach. Shannon's information entropy is maximised, subject to the symmetries and constraints which are physically relevant, within the powerful and non-perturbative theory of random matrices; this is a most distinctive feature of the book. Aiming for a self-contained presentation, the quantum theory of scattering, set in the context of quasi-one-dimensional, multichannel systems, and related directly to scattering problems in mesoscopic physics, is introduced in chapters two and three. The linear-response theory of quantum electronic transport, adapted to the context of mesoscopic systems, is discussed in chapter four. These chapters, together with chapter five on the maximum-entropy approach and chapter eight on weak localization, have been written in a most pedagogical style, suitable for use on graduate courses. In chapters six and seven, the problem of electronic transport through classically chaotic cavities and quasi-one-dimensional disordered systems is discussed. Many exercises are included, most of which are worked through in detail, aiding graduate students, teachers, and research scholars interested in the subject of quantum transport through disordered and chaotic systems.
Peptide Applications in Biomedicine, Biotechnology and Bioengineering summarizes the current knowledge on peptide applications in biomedicine, biotechnology and bioengineering. After a general introduction to peptides, the book addresses the many applications of peptides in biomedicine and medical technology. Next, the text focuses on peptide applications in biotechnology and bioengineering and reviews of peptide applications in nanotechnology. This book is a valuable resource for biomaterial scientists, polymer scientists, bioengineers, mechanical engineers, synthetic chemists, medical doctors and biologists.
Thermosets: Structure, Properties, and Applications, Second Edition builds on and updates the existing review of mechanical and thermal properties, as well as rheology and curing processes of thermosets, and the role of nanostructures in thermoset toughening. All chapters have been updated or re-written, and new chapters have been added to reflect ongoing changes and developments in the field of thermosetting materials and the applications of these materials. Applications of thermosets are the focus of the second part of the book, including the use of thermosets in the building and construction industry, aerospace technology and as insulation materials. Thermoset adhesives and coatings, including epoxy resins, acrylates and polyurethanes are also discussed, followed by a review of thermosets for electrical applications. New chapters include coverage of thermoset nanocomposites, recycling issues, and applications such as consumer goods, transportation, energy and defence. With its distinguished editor and international team of expert contributors, the second edition of Thermosets: Structure, Properties, and Applications is an essential guide for engineers, chemists, physicists and polymer scientists involved in the development, production and application of thermosets, as well as providing a useful review for academic researchers in the field.
This book addresses a range of synthesis and characterization techniques that are critical for tailoring and broadening the various aspects of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the science and fundamentals of both synthetic and natural polymer-based gels. Topics covered include: synthesis and structure of physically/chemically cross-linked polymer-gels/polymeric nanogels; gel formation through non-covalent cross-linking; molecular design and characterization; polysaccharide-based polymer gels: synthesis, characterization, and properties; modified polysaccharide gels: silica-based polymeric gels as platforms for the delivery of pharmaceuticals; gel-based approaches in genomic and proteomic sciences; emulgels in drug delivery; and organogels. The book provides a cutting-edge resource for researchers and scientists working in various fields involving polymers, biomaterials, bio-nanotechnology and functional materials.
Emerging Nanotechnologies in Dentistry, Second Edition, brings together an international team of experts from the fields of materials science, nanotechnology and dentistry to explain these new materials and their applications for the restoration, fixation, replacement or regeneration of hard and soft tissues in and about the oral cavity and craniofacial region. New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). Each chapter has been comprehensively revised from the first edition, and new chapters cover important advances in graphene based materials for dentistry, liposome based nanocarriers and the neurotoxicity of nanomaterials used in dentistry.
For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.
Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology, Second Edition describes the recommended practices for measurements and data processing for various SPM techniques, also discussing associated numerical techniques and recommendations for further reading for particular physical quantities measurements. Each chapter has been revised and updated for this new edition to reflect the progress that has been made in SPM techniques in recent years. New features for this edition include more step-by-step examples, better sample data and more links to related documentation in open source software. Scanning Probe Microscopy (SPM) techniques have the potential to produce information on various local physical properties. Unfortunately, there is still a large gap between what is measured by commercial devices and what could be considered as a quantitative result. This book determines to educate and close that gap. Associated data sets can be downloaded from http://gwyddion.net/qspm/
Micro-nanoelectronics Devices: Modeling of Diffusion and Operation Processes concentrates on the modeling of diffusion processes and the behavior of modern integrated components, from material, to architecture. It goes through the process, the device and the circuit regarding today's widely discussed nano-electronics, both from an industry perspective and that of public entities.
This monograph acts as a benchmark to current achievements in the field of Computer Coupling of Phase Diagrams and Thermochemistry, often called CALPHAD which is an acronym for Computer CALculation of PHAse Diagrams. It also acts as a guide to both the basic background of the subject area and the cutting edge of the topic, combining comprehensive discussions of the underlying physical principles of the CALPHAD method with detailed descriptions of their application to real complex multi-component materials. Approaches which combine both thermodynamic and kinetic models to interpret non-equilibrium phase transformations are also reviewed.
This book provides a comprehensive treatment of the physics of
hysteresis in magnetism and of the mathematical tools used to
describe it. Hysteresis in Magnetism discusses from a unified
viewpoint the relationsof hysteresis to Maxwells equations,
equilibrium and non-equilibrium thermodynamics, non-linear system
dynamics, micromagnetics, and domain theory. These aspects are then
applied to the interpretation of magnetization reversal mechanisms:
coherent rotation and switching in magnetic particles, stochastic
domain wall motion and the Barkhausen effect, coercivity mechanisms
and magnetic viscosity, rate-dependent hysteresis and eddy-current
losses. The book emphasizes the connection between basic physical
ideas and phenomenological models of interest to applications, and,
in particular, to the conceptual path going from Maxwells equations
and thermodynamics to micromagnetics and to Preisach hysteresis
modeling.
Nanostructured Semiconductors focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. Since the first edition of the book, there has been significant progress in the development of new functional nanomaterials with unique and sometimes unpredictable quantum-confined properties within the class what it called two-dimensional (2D) semiconductors. These nanocrystals represent extremely thin nano-structures with thickness of just few nano-meters. Since that time, not only were 2D semiconductor oxides further developed, more importantly, 2D metal dichalcogenides, such as MoS2, MoSe2, WS2, WSe2 and others also progressed significantly in their development demonstrating their superior properties compared to their bulk and microstructural counterparts. The book has been expanded to include these advancements. The book begins with the structure and properties of semiconductor nanocrystals (chapter 1), addresses electronic device applications (chapter 2), discusses 2-Dimensional oxides and dichalcogenide semiconductors (chapters 3 through 5), and ends with energy, environment, and bio applications (chapters 6 through 8).
Thermomechanical Behavior of Dissipative Composite Materials presents theoretical and numerical tools for studying materials and structures under fully coupled thermomechanical conditions, focusing primarily on composites. The authors cover many aspects of the modeling process and provide the reader with the knowledge required to identify the conservation laws and thermodynamic principles that must be respected by most solid materials. The book also covers construct constitutive laws for various types of dissipative processes, both rate-independent and rate-dependent, by utilizing a rigorous thermodynamic framework. Topics explored are useful for graduate students and advanced researchers who wish to strengthen their knowledge of the application of thermodynamic principles.
Supramolecular Chemistry, Volume 71, the latest release in the Advances in Inorganic Chemistry series presents timely and informative summaries on the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field, serving as an indispensable reference to advanced researchers. In this volume, concise, authoritative reviews provide an up-to-date resource material for new investigators and established research personnel. Included references enable readers to pursue detail and development in each field. In addition, research chemists in other fields can use this serial to acquaint themselves with the latest experimental methods, techniques and computational applications within the field of inorganic reaction mechanisms.
In order to grow replacement tissues, 3D scaffolds are widely used as a template for tissue engineering and regeneration. These scaffolds, which are typically 'seeded' with cells, support the growth of new tissues. However, in order to achieve successful tissue growth, the scaffold must meet specific requirements and are often 'functionalized' to accentuate particular properties. Functional 3D tissue engineering scaffolds: materials, technologies, and applications, is a comprehensive review of functional 3D scaffolds, providing information on the fundamentals, technologies, and applications. Part 1 focuses on the fundamentals of 3D tissue scaffolds, examining information on materials, properties, and trends. Part 2 discusses a wide range of conventional technologies for engineering functional 3D scaffolds, leading the way to a discussion on CAD and advanced technologies for functional 3D scaffold engineering. Chapters in part 3 study methods for functionalizing scaffolds to support a variety of in vivo functions whilst the final set of chapters provides an important review of the most significant applications of functional 3D scaffolds within tissue engineering. This book is a valuable resource for biomaterial scientists and biomedical engineers in academia and industry, with interests in tissue engineering and regenerative medicine.
This book highlights the latest research presented at the International Conference on Translational Medicine and Imaging (ICTMI) 2017. This event brought together the world's leading scientists, engineers and clinicians from a wide range of disciplines in the field of medical imaging. Bioimaging has continued to evolve across a wide spectrum of applications from diagnostics and personalized therapy to the mechanistic understanding of biological processes, and as a result there is ever-increasing demand for more robust methods and their integration with clinical and molecular data. This book presents a number of these methods.
This book presents a new approach to building renovation, combining aspects of various professional disciplines, integrating green building design, structural stability, and energy efficiency. It draws attention to several often-overlooked qualities of buildings that should be comprehensively integrated into the context of building renovation. The book presents an overview of the most important renovation approaches according to their scope, intensity, and priorities. Combining basic theoretical knowledge and the authors' scientific research it emphasizes the importance of simultaneous consideration of energy efficiency and structural stability in building renovation processes. It simultaneously analyses the effects of various renovation steps related to the required level of energy efficiency, while it also proposes the options of building extension with timber-glass upgrade modules as the solution to a shortage of usable floor areas occurring in large cities. This book offers building designers and decision makers a tool for predicting energy savings in building renovation processes and provides useful guidelines for architects, city developers and students studying architecture and civil engineering. Additionally, it demonstrates how specific innovations, e.g., building extensions with timber-glass modules, can assist building industry companies in the planning and development of their future production. The main aim of the current book is to expose various approaches to the renovation of existing buildings and to combine practical experience with existing research, in order to disseminate knowledge and raise awareness on the importance of integrative and interdisciplinary solutions.
This book presents the most important thermochemical and physical techniques of boriding. The formation and characterization of different boride layers or boride coatings are compared in this book. The author analyzes the technological aspects of boriding processes, presenting the advantages and disadvantages of each method. The effect of the boriding techniques on the microstructure of borided materials are also indicated. The mechanism of formation of active boron atoms or ions and the phenomena during re-melting of alloying material together with the substrate are described. Special attention is devoted to powder-pack boriding, electrochemical boriding in borax, gas boriding, plasma gas or paste boriding and laser or plasma surface alloying with boron, acknowledged as the most important current methods in boriding. The thermodynamics of gas boriding is also analyzed.
In two volumes, this book provides comprehensive coverage of the fundamental knowledge and technology of composite materials. This second volume reviews the research developments of a number of widely studied composite materials with different matrices. It also describes the related process technology that is necessary for a successful production. This work is ideal for graduate students, researchers, and professionals in the fields of materials science and engineering, as well as mechanical engineering.
This collection commemorates the occasion of the honorary symposium that celebrated the 75th birthday and lifelong contributions of Professor K.L. Murty. The topics cover the present status and recent advances in research areas in which he made seminal contributions. The volume includes articles on a variety of topics such as high-temperature deformation behaviors of materials (elevated temperature creep, tensile, fatigue, superplasticity) and their micromechanistic interpretation, understanding mechanical behavior of HCP metals/alloys using crystallographic texture, radiation effects on deformation and creep of materials, mechanical behavior of nanostructured materials, fracture and fracture mechanisms, development and application of small-volume mechanical testing techniques, and general structure-property correlations.
Biomaterials for Oral and Dental Tissue Engineering examines the combined impact of materials, advanced techniques and applications of engineered oral tissues. With a strong focus on hard and soft intraoral tissues, the book looks at how biomaterials can be manipulated and engineered to create functional oral tissue for use in restorative dentistry, periodontics, endodontics and prosthodontics. Covering the current knowledge of material production, evaluation, challenges, applications and future trends, this book is a valuable resource for materials scientists and researchers in academia and industry. The first set of chapters reviews a wide range of biomaterial classes for oral tissue engineering. Further topics include material characterization, modification, biocompatibility and biotoxicity. Part Two reviews strategies for biomaterial scaffold design, while chapters in parts three and four review soft and hard tissues. |
You may like...
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
Surface Modification of Magnesium and…
T S N Sankara Narayanan, Il-Song Park, …
Hardcover
R4,394
Discovery Miles 43 940
|