![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
How do you protect electrical systems from high energy electromagnetic pulses? This book is designed for researchers who wish to design toughned systems against EMPs from high altitude sources. It discusses numerous factors affecting the strength of EMPs as well as their impact on electronic components, devices and power electrical equipment. This book includes practical protection methods and means for evaluating their effectiveness.
Microencapsulations may be found in a number of fields like medicine, drug delivery, biosensing, agriculture, catalysis, intelligent microstructures and in many consumer goods. This new edition of Microencapsulation revises chapters to address the newest innovations in fields and adds three new chapters on the uses of microencapsulations in medicine, agriculture, and consumer products.
The Phase Field Crystal (PFC) model incorporates microscopic structural details into a mesoscopic continuum theory. Methods for fast propagation of PFC interfaces are discussed in this book. They can handle a wide range of thermal gradients, supersaturations and supercoolings, including applications such as selective laser melting. The reader will find theoretical treatment in the first half, while the latter half discusses numerical models.
This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology.
"Perovskite-Based Solar Cells: From Fundamentals to Tandem Devices" gives fundamental understanding of perovskite solar cells from the chemical composition of each thin layer composing the different stacks to the whole device. Special attention has been given to the development of the materials forming the perovskite solar cell and their effect on the device performance, in addition to the recent progress of this emerging technology. Moreover, light has been shed on the perovskite elaboration techniques, in addition to the several techniques proposed to improve both the efficiency and the stability of perovskite solar cells. Furthermore, special emphasis was given to the three types of tandem solar cells and their recent advances starting from Perovskite/perovskite tandem solar cells to Perovskite/ CIGS tandem cells to perovskite/ heterojunction silicon tandem solar cells. The latter constitute a promising solution to improve photovoltaic solar cells performance.
Reinforced concrete is one of the most widely used modern materials
of construction. It is comparatively cheap, readily available, and
suitable for a variety of building and construction applications.
Over the past three decades, the terminology of composite materials has been well acknowledged by the technical community, and composite materials have been gaining exponential acceptance in a diversity of industries, serving as competitive candidates for traditional structural and functional materials to realize current and future trends imposed on high performance structures. Striking examples of breakthroughs based on utilization of composite materials are increasingly found nowadays in transportation vehicles (aircraft, space shuttle and automobile), civil infrastructure (buildings, bridge and highway barriers), and sporting goods (F1, golf club, sailboat) etc., owing to an improved understanding of their performance characteristics and application potentials, especially innovative, cost-effective manufacturing processes. As the equivalent of ICCM in the Asian-Australasian regions, the Asian-Australasian Association for Composite Materials (AACM) has been playing a vital leading role in the field of composites science and technology since its inception in 1997 in Australia. Following the excellent reputations and traditions of previous ACCMs, ACCM-4 is held in scenic Sydney, Australia, 6-9 July 2004. The theme of ACCM-4, Composites Technologies for 2020, provides a forum to present state-of-the-art achievements and recent advances in composites sciences & technologies, and discuss and identify key and emerging issues for future pursuits. By bringing together leading experts and promising innovators from the research institutions, end-use industries and academia, ACCM-4 intends to facilitate broadband knowledge sharing and identify opportunities for long-term cooperative research and development ventures. The scope of ACCM-4 is broad. It includes, but is not limited to, the following areas: Bi- composites, Ceramic matrix composites, Durability and aging, NDE and SHM Eco-composites, Manufacturing and processing technologies, Industrial applications, Interphases and interfaces, Impact and dynamic response Matrices (polymers, ceramics, and metals), Mechanical and physical properties (fatigue, fracture, micromechanics, viscoelastic behavior, buckling and failure, etc.), Metal matrix composites, Multi-functional composites, Nano-composites, Reinforcements (textiles, strand, and mat), Smart materials and structures, Technology transfer (education, training, etc.)
"Mesoporous Crystals and Related Nano-Structures Materials"
contains the invited lectures to be presented at the symposium on
Mesoporous Crystals and Related Nano-Structures Materials,
Stockholm, Sweden, June 1-2, 2004. This book highlights the core
research that has led to such a fruitful and exciting field.
Passing on, first hand, the synthesis of this novel material makes
this book an important reference material to researchers young and
old.
This book presents a generalised computational model for the degradation of resorbable composites, using analytic expressions to represent the interwoven phenomena present during degradation. It then combines this modelling framework with a comprehensive database of quantitative degradation data mined from existing literature and from novel experiments, to provide new insights into the interrelated factors controlling degradation. Resorbable composites made of biodegradable polyesters and calcium-based ceramics have significant therapeutic potential as tissue engineering scaffolds, as temporary implants and as drug-loaded matrices for controlled release. However, their degradation is complex and the rate of resorption depends on multiple connected factors such as the shape and size of the device, polymer chemistry and molecular weight, particle phase, size, volume fraction, distribution and pH-dependent dissolution properties. Understanding and ultimately predicting the degradation of resorbable composites is of central importance if we are to fully unlock the promise of these materials.
Volume20 of the "Handbook of Magnetic Materials," as the preceding
volumes, has a dual purpose. As a textbook it is intended to help
those who wish to be introduced to a given topic in the field of
magnetism without the need to read the vast amount of literature
published. As a work of reference it is intended for scientists
active in magnetism research. To this dual purpose, Volume20 is
composed of topical review articles written by leading authorities.
In each of these articles an extensive description is given in
graphical as well as in tabular form, much emphasis being placed on
the discussion of the experimental material in the framework of
physics, chemistry and material science. It provides readers with
novel trends and achievements in magnetism.
A hydrocode refers to a computer program used for the study of the
dynamic response of materials and structures to impulse (primary
blast), impact (involving everything from car and aircraft
collisions to impacts of space structures by assorted debris).
This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.
Based on "The Virtual Conference on Chemistry and its Applications (VCCA-2020) - Research and Innovations in Chemical Sciences: Paving the Way Forward" held in August 2020 and organized by the Computational Chemistry Group of the University of Mauritius. The chapters reflect a wide range of fundamental and applied research in the chemical sciences and interdisciplinary subjects.
Corrosion is a degrading material process frequently encountered in engineering structures and components, which may lead to costly and catastrophic failures if not properly and timely addressed. This volume describes a wide spectrum of experimental and analytical studies, which provide a fairly comprehensive account of corrosion manifestations and methodologies for addressing them in structural and industrial design. As such, it is expected to make a valuable reference publication for engineers and scientists interested in the protection of structures and components from harmful and potentially ruinous corrosive action.The collected articles comprising this volume address issues which can be categorised into two main areas. The first is concerned with material science approaches to corrosion, that is, visual or instrumental means of assessing existing behaviour or effectiveness of corrective measures and techniques. The second part of the volume comprises boundary element simulations of cathodic protection schemes for the purpose of predicting and optimising their performance.A number of practical problems are analysed such as: the coating condition on a ballast tank wall; the impressed current cathodic protection of an offshore platform and minimizing a ship's electric and magnetic signature. Topics covered include: Elemental identification; Material loss; Strain fields; Stress corrosion cracking; Corrosion resistance; Fretting corrosion; Contact surface damage; Electrochemical testing; Coating conditions; Cathodic protection; Current density distribution; Pipelines and deep well casings; Electric and magnetic signatures; Coating damage effects; Galvanic corrosion.
Covering the latest technologies, Nanotechnology in eco-efficient construction provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction. The book contains a special focus on applications concerning concrete and cement, as nanotechnology is driving significant development in concrete technologies. The new edition has 14 new chapters, including 3 new parts: Mortars and concrete related applications; Applications for pavements and other structural materials; and Toxicity, safety handling and environmental impacts. Civil engineers requiring an understanding of eco-efficient construction materials, as well as researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry will find this updated reference to be highly valuable.
The field of Corrosion Modelling has evolved tremendously since the first work was published in the early 1980's. Its initial application in the offshore industry has expanded to the point where modelling is applied in practically all application areas and the software has been developed to fulfil these needs. This book presents contributions from the most influential researchers and developers of corrosion modelling tools and users who apply the technology in their industry. Providing an excellent introduction to the state-of-the-art in computer modelling of corrosion and related electrochemical processes, this book will be of value to corrosion engineers and physicists, model developers and researchers. |
You may like...
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Comprehensive Structural Integrity
Ferri M.H. Aliabadi, Winston (Wole) Soboyejo
Hardcover
R99,774
Discovery Miles 997 740
Nanofluid Applications for Advanced…
Shriram S. Sonawane, Mohsen Sharifpur
Paperback
R3,922
Discovery Miles 39 220
|