Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > General
This book represents Volume 2 in a series on the use of Mossbauer spectroscopy in the study of magnetism and materials. However, the perceptive reader will notice some differences from Volume 1. Specifically, in order to market the book at a more affordable price for most universities and research laboratories, the book has been prepared in camera ready format The editors and the authors agreed to do this because there is a demand for such a book in the Mossbauer community. This format has placed an extra burden on the editors and the authors and we hope we have overcome all the difficulties generated by the transfer of files between different computers. In order to make the book more attractive to materials scientists who are not experts in Mossbauer spectroscopy, this volume is particularly oriented towards the study of materials by Mossbauer spectroscopy and related complementary techniques, such as neutron scattering and a variety of surface scattering techniques. The authors of this volume can be proud of the high quality professional effort they have devoted to clearly presenting their specific topics. As a result we very much enjoyed working with the authors on this volume. We hope that their effort will help to educate the next generation of Mossbauer effect spectroscopists, a generation which will face the challenge of maintaining equally high scientific and professional standards in their research work."
This fundamental book on interfacial phenomena forms the basis of application of interface and colloid science to various disperse systems. These include suspensions, emulsions, nano-dispersions, wetting, spreading, deposition and adhesion of particles to surfaces. These systems occur in most industrial applications, such as personal care and cosmetic formulations, pharmaceutical systems particularly for controlled and targeted delivery of drugs, agrochemical formulations and enhancement of their biological performance, paints and coatings as well as most food formulations. These applications are described in volume 2. The text is very valuable for formulation chemists, chemical engineers and technologies who are involved in such applications. In addition this fundamental text is also valuable for research scientists and Ph.D. students investigating various aspects of interface and colloid science.
This book explores the improvement in thermal insulation properties of protein-based silica aerogel composites fabricated by a novel, inexpensive and feasible method. The resulting material exhibits polymeric foam behavior including high compressibility, super-hydrophobic qualities and excellent strain recovery in addition to low thermal conductivity. The fabrication methodologies are explained in great detail and represented in flowcharts for easy reference and understanding. This monograph gives readers a new perspective on composite fabrication using methods other than the traditional ones and explores the endless ways of altering the composition to modify the properties of the silica aerogel composites. Applications for this novel composite are diverse and range from those in the pharmaceutical and aerospace industries to the oil and gas industries.
This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material. Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials. The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthermore, the book reviews a large number of experimental results on these failure mechanisms. The book will benefit structural and materials engineers and researchers seeking a "birds-eye" view of possible failure mechanisms in structures along with the associated failure and structural mechanics.
"Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics" complements and adds to volume 8 "Glassy, Amorphous and Nano-Crystalline Materials" by providing a coherent and authoritative overview of cutting-edge themes in this field. In particular, the book focuses on reaction thermodynamics and kinetics applied to solid-state chemistry and thermal physics of various states of materials. Written by an international array of distinguished academics, the book deals with fundamental and historical aspects of phenomenological kinetics, equilibrium background of processes, crystal defects, non-stoichiometry and nano-crystallinity, reduced glass-transition temperatures and glass-forming coefficients, determination of the glass transition by DSC, the role of heat transfer and phase transition in DTA experiments, explanation of DTA/DSC methods used for the estimation of crystal nucleation, structural relaxation and viscosity behaviour in glass and associated relaxation kinetics, influence of preliminary nucleation and coupled phenomenological kinetics, nucleation on both the strongly curved surfaces and nano-particles, crystallization of glassy and amorphous materials including oxides, chalcogenides and metals, non-parametric and fractal description of kinetics, disorder and dimensionality in nano-crystalline diamond, thermal analysis of waste glass batches, amorphous inorganic polysialates and bioactivity of hydroxyl groups as well as reaction kinetics and unconventional glass formability of oxide superconductors. "Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics" is a valuable resource to advanced undergraduates, postgraduates, and researches working in the application fields of material thermodynamics, thermal analysis, thermophysical measurements, and calorimetry.
Silicon dioxide plays a central role in most contemporary electronic and photonic technologies, from fiber optics for communications and medical applications to metal-oxide-semiconductor devices. Many of these applications directly involve point defects, which can either be introduced during the manufacturing process or by exposure to ionizing radiation. They can also be deliberately created to exploit new technologies. This book provides a general description of the influence that point defects have on the global properties of the bulk material and their spectroscopic characterization through ESR and optical spectroscopy.
This is the first book that analyses the future raw materials supply from the demand side of a society that chiefly relies on renewable energies, which is of great significance for us all. It addresses primary and secondary resources and substitution, not only from technical but also socioeconomic and ethical points of view. The "Energiewende" (Energy Transition) will change our consumption of natural resources significantly. When in future our energy requirements will be covered mostly by wind, solar power and biomass, we will need less coal, oil and natural gas. However, the consumption of minerals, especially metallic resources, will increase to build wind generators, solar panels or energy storage facilities. Besides e.g. copper, nickel or cobalt, rare earth elements and other high-tech elements will be increasingly used. With regard to primary metals, Germany is 100 % import dependent; only secondary material is produced within Germany. Though sufficient geological primary resources exist worldwide, their availability on the market is crucial. The future supply of the market is dependent on the development of prices, the transparency of the market and the question of social and ethical standards in the raw materials industry, as well as the social license to operate, which especially applies to mining. The book offers a valuable resource for everyone interested in the future raw material supply of our way of life, which will involve more and more renewable energies.
This volume is the latest of the "Kirchberg-Proceedings". The previous 11 International Winterschools on Electronic Properties of Novel Materials, all held in Kirchberg, Austria, were devoted to conducting polymers, high temperature superconductors, fullerenes, and carbon nanotubes. Fullerenes and nanotubes are still in the center of interest, but the topic of the school and the proceedings is molecular nanostructures in general. The organizers have attempted to treat carbon nanostructures as a special case of molecular nanostructures, which also include silicon clusters, gold clusters, vanadium oxide tubes, and many others. The Winterschool provides a platform for reviewing and discussing new developments in the field of molecular nanostructures and their applications. Materials discussed include fullerenes, fullerene-derived structures, carbonaceous nanotubes, non-carbonaceous nanotubes, layer by layer systems, molecular clusters, new phases of carbon, endohedral compounds and related materials. The book aims to give an overview of the current status of fullerenes, carbon-nanotubes and related molecular nanostructures. The majority of the contributions present the latest results of experiments and calculations conducted in the field. However, about a dozen contain some degree of instructional material which even newcomers will benefit from.
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
Surfaces and interfaces of polymers play an important role in most of the application areas of polymers, e.g. moulds, foils, thin films, coatings, adhesive joints, blends, composites, biomaterials or applications in micro- and nanotechnology. Therefore it is very important to be able to characterize these surfaces and interfaces in detail. In Polymer Surfaces and Interfaces, experts provide concise explanations, with examples and illustrations, of the key techniques. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems.
One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences and medicine. The Computational Biomechanics for Medicine series provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This 5th edition comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis and both patient-specific fluid dynamics and solid mechanics simulations.
Metals in Wastes is an excellent guide for scientists, students, engineers, chemists, and industrial chemists who are looking for knowledge of the main sources of metals in industrial wastes. Metals are valuable materials that can be recycled again and again without degrading their properties. The recycling of metals enables us to preserve natural resources while requiring less energy to process than the manufacture of new products using virgin raw materials. A team of experts reviews the state-of-the-art and provides the readers not only with a comprehensive in-depth overview of the main composition of wastes but also discloses innovative methods which have been applied for recovery of critical and valuable metals in petrochemical industry, rubber, energy and automotive industries. This know-how could be considered as a useful reference tool for moving towards the zero-waste economy. Additionally, the book describes the economic aspects of metals recovery from various sources. This is essential for those already involved in the metals business and also for the financial, investment and advisory community internationally.
TheKramers-Kronigrelationsconstitutethemathematicalformulationofthe fundamental connection between the in-phase to the out-of-phase response of a system to a sinusoidal time-varying external perturbation. Such connection exists in both classical and quantum physical systems and derives directly from the principle of causality. Apart from being of great importance in high energy physics, statistical physics, and acoustics, at present the Kramers-Kronig relations are basic and widely-accepted tools for the investigation of the linear optical properties of materials, since they allow performing the so-called inversion of optical data, i.e. acquiring knowledge on dispersive phenomena by measurements of absorptive phenomena over the whole energy spectrum or vice versa. Since the late '80s, a growing body of theoretical results as well as of experimental evidences has shown that the Kramers-Kronig relations can be adopted for e?ciently acquiring knowledge on nonlinear optical phenomena. These results suggest that the Kramers-Kronig relations may become in a near future standard techniques in the context of nonlinear spectroscopy. Thisbookisthe?rstcomprehensivetreatisedevotedtoprovidingauni- ing picture of the physical backgrounds, of the rigorous mathematical theory, and of the applications of the Kramers-Kronig relations in both ?elds of l- ear and nonlinear optical spectroscopy. Some basic programs written for the 1 MATLAB environment are also included. This book is organized as an argumentative discourse, progressing from the linear to the nonlinear phenomena, from the general to the speci?c s- tems, and from the theoretical to the experimental results.
The worldwide trend toward lead-free components and soldering is especially urgent in the European Union with the implementation strict new standards in July 2006, and with pending implementation of laws in China and California. This book provides a standard reference guide for engineers who must meet the new regulations, including a broad collection of techniques for lead-free soldering design and manufacture, which up to now have been scattered in difficult-to-find scholarly sources.
In this book, the authors give an up-to-date account of thermoluminescence (TL) and other thermally stimulated phenomena. Although most recent experimental results of TL in different materials are described in some detail, the main emphasis in the present book is on general processes, and the approach is more theoretical. Thus the details of the possible processes which can take place during the excitation of the sample, and during its heating, are carefully analysed. The methods for analysing TL glow curves are critically discussed, and recommendations as to their application are made. Also discussed is the expected behavior of these phenomena as functions of the experimental parameters, for example, dose of excitation. The consequences of the main applications of TL (for example, radiation dosimetry) are also discussed in detail as are the similarities and dissimilarities of other thermally stimulated phenomena, and the simultaneous measurements of the latter and TL.
Diluted magnetic semiconductors, or semimagnetic semiconductors, seemed for a while to be one of those research topics whose glory (i. e. , the period of most ext- sive research) belongedalready to the past. This particularlyapplied to "traditional" diluted magnetic semiconductors, i. e. , substitutional alloys of either II-VI or IV-VI semiconductors with transition metal ions. Fortunately, a discovery, in the beg- ning of the nineties [1,2], of ferromagnetic ordering in III-V DMSs with critical temperatures reaching 170 K has renewed and greatly intensi ed an interest in those materials. This was, at least partially, related to expectations that their Curie temperatures can be relatively easily brought to room temperature range through a clearly delineatedpath and,partially,due to the great successes, also commercial,of metallic version of spintronics, which earned its founders the Nobel Prize in 2007. The semiconductor version of spintronics has attracted researchers also because of hopes to engage it in efforts to construct quantum information processing devices. While these hopes and expectations are not fully realized yet, the effort is going on. As a goodexampleof recentachievements,new resultson quantumdotsconta- ing a single magnetic ion should be mentioned. A great progress has been achieved in studies of excitonic states in such quantum dots, so far limited to InAs/GaAs [3,4] and CdTe/ZnTe [5,6] material systems and to Manganese as the magnetic ion. Furthermore, in the II-VI QDs, rst results on the optical control of the Mn spin states havebeenexperimentallydemonstrated[7-9]andtheoreticallyanalyzed[10]; the studies of Mn spin dynamics and control in III-V QDs will certainly follow.
This thesis addresses the problem of improving the alignment of carbon nanotubes (CNTs) in transistor applications, taking a unique approach using iptycenes acting as molecular tweezers in combination with a liquid crystal solvent. As part of a project to test the effectiveness of a multi-step method, the so-called Alignment Relay Technique (ART), this work contributed evidence for the selectivity and stability of ART, as well as providing the first proof-of-concept that ART can be used to create CNT field-effect transistors (FETs). The thesis effectively explains and illustrates the chemical synthesis of the tweezers, the concept and actualization of the technique, the various factors observed to influence deposition and selectivity, along with material fabrication using both photolithography and electron beam lithography. This research advances knowledge of transistors and expands the applications of small organic molecules in the field of materials science. Particular highlights of this thesis include: an extensive review of ART, its advantages, and limitations; development of new material chemistry methods for the optimization of semiconducting CNT selectivity; and a comprehensive exploration of fabrication and characterization of CNTFETs for future applications.
Sensors and Actuators using polymeric systems is one of the most promising fields of "Intelligent Polymers", which is becoming more and more important associating with artificial sensing and actuating systems in living organisms. Some practical applications have now started to test in industry. The book covers optical, gas, taste, and other sensing systems using various kinds of polymers. Soft and wet actuating systems using polymer gels and networks are another field which caused excitation in the last year. The contributors are all pioneers in the field, and were selected from world-wide level. They provide the necessary background information and science to develop a basic understanding of the field, its supporting technologies and current applications. Besides, the overviews will provide a sense of how these supporting technologies can be combined to meet the requirements of advanced systems. Finally, the readers will learn about potential future developments.
Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.
Adaptronic structures and systems are engineered to adjust automatically to variable operating and environmental conditions, through the use of feedback control. The authors of this book have taken on the task of comprehensively describing the current state of the art in this highly modern and broadly interdisciplinary field. The book presents selected examples of applications, and goes on to demonstrate current development trends.
The natural microporous materials include several types of minerals such as zeolites, clay minerals, micas, Fe-lMn- oxides/hydroxidesloxyhydroxides present in various geo- logical environments and soil formations. Their crystal structure is characterised by the presence of intra crystal micropores (channels or interlayer void spaces) providing high microporosity/surface area and distinguished physico-chemical properties such as cata- lytic and sorptivelion-exchange ones. This volume includes the key- lectures and participant contributions delivered at the NATO-funded Advanced Research Workshop on the Application of Natural Microporous Materials for Environmental Technology, which was held in the th Smolenice Castle, Slovakia, from the 2()1h to 30 of October 1998 and was attended by 55 participants from 17 countries. The purpose of the workshop was the critical assessment of the current developments and discussion of the future perspectives in the field of utilisation of natural microporous materials (zeolites, clays, oxides) for the solution of problems related to the toxic and nuclear waste management, water pollution control and decontamination, the environmental catalysis associated with atmospheric pollution, the creation of new materials for energy storage and agricultural management including the development of artificial soils for plant growth in the space. Of especial importance for this meeting was the exchange of information and know-how among specialists working in institutions of NATO and Cooperation Partner countries aiming towards the development of common strategies for the solution of environmental problems and the promotion of further scientific and technological collaboration in the field. |
You may like...
Nanoscale Materials in Chemistry…
Larry Erikson, Ranjit Koodali, …
Hardcover
R5,412
Discovery Miles 54 120
The 2nd International Online Conference…
Gianluca Cicala, Ana Marıa Dıez Pascual
Hardcover
R1,145
Discovery Miles 11 450
Perovskites and Related Mixed Oxides…
Pascal Granger, Vasile I. Parvulescu, …
Hardcover
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,420
Discovery Miles 54 200
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
|