|
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
Information and communication technologies play an essential role
in the effectiveness and efficiency of smart city processes.
Recognizing the role of process analysis in energy usage and how it
can be enhanced is essential to improving city sustainability.
Smart Grid Analytics for Sustainability and Urbanization provides
emerging research on the development of information technology and
communication systems in smart cities and smart grids. While
highlighting topics such as process mining, innovation management,
and sustainability optimization, this publication explores
technology development and the mobilization of different
environments in smart cities. This book is an important resource
for graduate students, researchers, academics, engineers, and
government officials seeking current research on how process
analysis in energy usage is manifested and how it can be enhanced.
Wind energy is often framed as a factor in rural economic
development, an element of the emerging "green economy" destined to
upset the dominant greenhouse- gas-emitting energy industry and
deliver conscious capitalism to host communities. The bulk of wind
energy firms, however, are subsidiaries of the same fossil fuel
companies that wrought havoc in shale-gas and coal-mining towns
from rural Appalachia to the Great Plains. On its own, wind energy
development does not automatically translate into community
development. In Governing the Wind Energy Commons, Keith Taylor
asks whether revenue generated by wind power can be put to
community well-being rather than corporate profit. He looks to the
promising example of rural electric cooperatives, owned and
governed by the 42 million Americans they serve, which generate $40
billion in annual revenue. Through case studies of a North Dakota
wind energy cooperative and an investor-owned wind farm in
Illinois, Taylor examines how regulatory and social forces are
shaping this emerging energy sector. He draws on interviews with
local residents to assess strategies for tipping the balance of
power away from absentee-owned utilities.
As environmental issues remain at the forefront of energy research,
renewable energy is now an all-important field of study. And as
smart technology continues to grow and be refined, its applications
broaden and increase in their potential to revolutionize
sustainability studies. This potential can only be fully realized
with a thorough understanding of the most recent breakthroughs in
the field. Research Advancements in Smart Technology, Optimization,
and Renewable Energy is a collection of innovative research that
explores the recent steps forward for smart applications in
sustainability. Featuring coverage on a wide range of topics
including energy assessment, neural fuzzy control, and
biogeography, this book is ideally designed for advocates,
policymakers, engineers, software developers, academicians,
researchers, and students.
Smart Energy Grid Engineering provides in-depth detail on the
various important engineering challenges of smart energy grid
design and operation by focusing on advanced methods and practices
for designing different components and their integration within the
grid. Governments around the world are investing heavily in smart
energy grids to ensure optimum energy use and supply, enable better
planning for outage responses and recovery, and facilitate the
integration of heterogeneous technologies such as renewable energy
systems, electrical vehicle networks, and smart homes around the
grid. By looking at case studies and best practices that illustrate
how to implement smart energy grid infrastructures and analyze the
technical details involved in tackling emerging challenges, this
valuable reference considers the important engineering aspects of
design and implementation, energy generation, utilization and
energy conservation, intelligent control and monitoring data
analysis security, and asset integrity.
This book, the first in the Woodhead Publishing Reviews: Mechanical
Engineering Series, is a collection of high quality articles (full
research articles, review articles and cases studies) with a
special emphasis on research and development in mechatronics and
manufacturing engineering. Mechatronics is the blending of
mechanical, electronic, and computer engineering into an integrated
design. Today, mechatronics has a significant and increasing impact
on engineering with emphasis on the design, development and
operation of manufacturing engineering systems. The main objective
of this interdisciplinary engineering field is the study of
automata from an engineering perspective, thinking on the design of
products and manufacturing processes and systems. Mechatronics and
manufacturing systems are well established and executed within a
great number of industries including aircraft, automotive and
aerospace industries; machine tools, moulds and dies product
manufacturing, computers, electronics, semiconductor and
communications, and biomedical.
Electrical motor products reviews the energy efficiency management
laws for electrical motor products in United States, European Union
(EU) and China. The energy efficiency certification requirements
for the electrical motor products vary from country to country and
are summarised here. International standards, testing methods and
certification requirements for specific electrical motor products
are discussed, including electric motors, pumps and fans. Finally,
methods for improving energy efficiency are examined.
Metrology is part of the essential but largely hidden
infrastructure of the modern world. This book concentrates on the
infrastructure aspects of metrology. It introduces the underlying
concepts: International system of units, traceability and
uncertainty; and describes the concepts that are implemented to
assure the comparability, reliability and quantifiable trust of
measurement results. It is shown what benefits the traditional
metrological principles have in fields as medicine or in the
evaluation of cyber physical systems.
Electrical steels are critical components of magnetic cores used in
applications ranging from large rotating machines, including energy
generating equipment, and transformers to small instrument
transformers and harmonic filters. Presented over two volumes, this
comprehensive handbook provides full coverage of the
state-of-the-art in electrical steels. Volume 2 describes
performance and outlines applications of electrical steels. Topics
covered include localised characteristics of electrical steels;
practical properties of electrical steels; other electrical steels;
prediction of losses in electrical steels; application of
electrical steels in transformer cores; applications of electrical
steels in rotating electrical machines; non-sinusoidal
magnetisation and applications; magnetic building factors in
electrical steel cores; use of amorphous ribbon and nano-materials
in transformer cores; electrical machine core vibration and noise;
approaches to predictions and measurements of flux density and loss
distributions in electrical machine cores; the application of
international standards to magnetic alloys and steels; electrical
steels and renewable energy systems; environmental impact of
electrical steels; and typical performance data of commercial
electrical steels. The companion Volume 1 covers the fundamentals
and basic concepts of electrical steels.
Phasor Measurement Units and Wide Area Monitoring Systems presents
complete coverage of phasor measurement units (PMUs), bringing
together a rigorous academic approach and practical considerations
on the implementation of PMUs to the power system. In addition, it
includes a complete theory and practice of PMU technology
development and implementation in power systems.
|
|