![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
The "greening" of industry processes - i.e., making them more sustainable - is a popular and often lucrative trend which has seen increased attention in recent years. Green Chemical Processes, the 2nd volume of Green Chemical Processing, covers the hot topic of sustainability in chemistry with a view to education, as well as considering corporate and environmental interests, e.g. in the context of energy production. The diverse team of authors allows for a balance between these different, but interconnected perspectives. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
Ac Electric Machines and Their Control addresses the electromechanics and control of ac electric machines. The book supports advanced undergraduate and graduate courses. It will also be useful to the practicing professional that desires a detailed explanation of how electromagnetic fields interact within modern electric machinery, and the control methods available to manipulate those fields. The text tries to achieve a balance between mathematical rigor and physical insight.
Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.
Respected for its accuracy, its smooth and logical flow of ideas, and its clear presentation, Field and Wave Electromagnetics has become an established textbook in the field of electromagnetics. This book builds the electromagnetic model using an axiomatic approach in steps: first for static electric fields, then for static magnetic fields, and finally for time-varying fields leading to Maxwell's equations. This approach results in an organised and systematic development of the subject matter. Applications of derived relations to fundamental phenomena and electromagnetic technologies are explained.
A restricted source of power supply is analysed in this book - namely the switching mode power supplies (SMPS), which utilise the Pulse Width Modulation (PWM) technique to operate. Even though restricted, such a class of power supply is vital to circuits as most of modern electronic equipment is dependant on this form of technology to feed electronic boards. Its main advantages are greater efficiency, and its minimum physical size and weight.
This volume presents the selected papers of the First International Conference on Fundamental Research in Electrical Engineering, held at Khwarazmi University, Tehran, Iran in July, 2017. The selected papers cover the whole spectrum of the main four fields of Electrical Engineering (Electronic, Telecommunications, Control, and Power Engineering).
This book explains the fundamentals of control theory for Internet of Things (IoT) systems and smart grids and its applications. It discusses the challenges imposed by large-scale systems, and describes the current and future trends and challenges in decision-making for IoT in detail, showing the ongoing industrial and academic research in the field of smart grid domain applications. It presents step-by-step design guidelines for the modeling, design, customisation and calibration of IoT systems applied to smart grids, in which the challenges increase with each system's increasing complexity. It also provides solutions and detailed examples to demonstrate how to use the techniques to overcome these challenges, as well as other problems related to decision-making for successful implementation. Further, it anaylses the features of decision-making, such as low-complexity and fault-tolerance, and uses open-source and publicly available software tools to show readers how they can design, implement and customise their own system control instantiations. This book is a valuable resource for power engineers and researchers, as it addresses the analysis and design of flexible decision-making mechanisms for smart grids. It is also of interest to students on courses related to control of large-scale systems, since it covers the use of state-of-the-art technology with examples and solutions in every chapter. And last but not least, it offers practical advice for professionals working with smart grids.
Artificial intelligence has been applied to many areas of science and technology, including the power and energy sector. Renewable energy in particular has experienced the tremendous positive impact of these developments. With the recent evolution of smart energy technologies, engineers and scientists working in this sector need an exhaustive source of current knowledge to effectively cater to the energy needs of citizens of developing countries. Computational Methodologies for Electrical and Electronics Engineers is a collection of innovative research that provides a complete insight and overview of the application of intelligent computational techniques in power and energy. Featuring research on a wide range of topics such as artificial neural networks, smart grids, and soft computing, this book is ideally designed for programmers, engineers, technicians, ecologists, entrepreneurs, researchers, academicians, and students.
Geolocation is a process that utilizes sensors to pick up enemy emissions and locate electronic warfare (EW) targets. It is of particular interest among EW professionals because it allows them to use the enemy's own emissions to help set GPS coordinates and accurately pinpoint a target for attack. This book authoritative book is invaluable to EW engineers because it describes the mathematical development underlying current and classical methods of geolocating electronic systems that are emitting. Supported with over 620 equations and more than 115 illustrations, the book provides practitioners with critical information on a variety of geolocation algorithms and techniques. Engineers gain an in-depth understanding of key target location methods that they can effectively apply to their work in the field.
This two-volume set focuses on fundamental concepts and design goals (i.e., a switch/router's key features), architectures, and practical applications of switch/routers in IP networks. The discussion includes practical design examples to illustrate how switch/routers are designed and how the key features are implemented. Designing Switch/Routers: Fundamental Concepts, Design Methods, Architectures, and Applications begins by providing an introductory level discussion that covers the functions and architectures of the switch/router. The first book considers the switch/router as a generic Layer 2 and Layer 3 forwarding device without placing emphasis on any particular manufacturer's device. The underlining concepts and design methods are not only positioned to be applicable to this generic switch/router, but also to the typical switch/router seen in the industry. The discussion provides a better insight into the protocols, methods, processes, and tools that go into designing switch/routers. The second volume explains the design and architectural considerations, as well as, the typical processes and steps used to build practical switch/routers. It then discusses the advantages of using Ethernet in today's networks and why Ethernet continues to play a bigger role in Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN) design. This book set provides a discussion of the design of switch/routers and is written in a style to appeal to undergraduate and graduate-level students, engineers, and researchers in the networking and telecoms industry, as well as academics and other industry professionals. The material and discussion are structured in such a way that they could serve as standalone teaching material for networking and telecom courses and/or supplementary material for such courses.
Microwave photonics and information optics provide high bandwidth and precision along with ultrafast speed at a low cost. In order to reduce noise at the communication trans-receivers, scattering in the devices needs to be decreased, which can be achieved by replacing optoelectronic devices with photonic devices because in the latter only photons propagate electromagnetic waves. Contemporary Developments in High-Frequency Photonic Devices is a crucial research book that examines high-frequency photonics and their applications in communication engineering. Featuring coverage on a wide range of topics such as metamaterials, optoelectronic devices, and plasmonics, this book is excellent for students, researchers, engineers, and professionals.
This book proposes the air insulation prediction theory and method in the subject of electrical engineering. Prediction of discharge voltage in different cases are discussed and worked out by simulation. After decades, now bottlenecks of traditional air discharge theories can be solved with this book. Engineering applications of the theory in air gap discharge voltage prediction are introduced. This book serves as reference for graduate students, scientific research personnel and engineering staff in the related fields.
This book discusses the design and implementation of energy harvesting systems targeting wearable devices. The authors describe in detail the different energy harvesting sources that can be utilized for powering low-power devices in general, focusing on the best candidates for wearable applications. Coverage also includes state-of-the-art interface circuits, which can be used to accept energy from harvesters and deliver it to a device in the most efficient way. Finally, the authors present power management circuits for using multiple energy harvesting sources at the same time to power devices and to enhance efficiency of the system.
In the last thirty years optimization theory has been extensively applied to the optimal design of mechanical structures and, in general, to the solution of inverse problems in structural mechanics. In electromagnetism, however, the impact of optimization methods is much more recent. The present book is the first one on the subject of inverse problems and optimal design in electricity and magnetism. Filling this gap in the literature was the primary goal of the authors. The secondary one was to provide a comprehensive reference book offering a broad view of the subject ranging from theory to computer implementations. Having this in mind, the authors tried to write a book which might serve as a textbook for graduate students in electrical engineering as well as a reference for applied mathematicians and researchers. Possible applications pertain to a great many different areas: electrical machines, high voltage engineering, nuclear magnetic resonance spectrography, electron optics, plasma techniques, etc.
This book outlines the challenges that increasing amounts of renewable and distributed energy represent when integrated into established electricity grid infrastructures, offering a range of potential solutions that will support engineers, grid operators, system planners, utilities, and policymakers alike in their efforts to realize the vision of moving toward greener, more secure energy portfolios. Covering all major renewable sources, from wind and solar, to waste energy and hydropower, the authors highlight case studies of successful integration scenarios to demonstrate pathways toward overcoming the complexities created by variable and distributed generation.
The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a system of algebraic equations, which are then reduced separately. For the reduction of the ODE system, conventional MOR methods can be used, whereas for the reduction of the algebraic systems new methods are discussed. The discussion focuses on the index-aware model order reduction method (IMOR) and its variations, methods for which the so-called index of the original model is automatically preserved after reduction.
This new edition of the Phosphor Handbook comprises three volumes and provides a comprehensive source of knowledge for researchers interested in synthesis, characterization, properties, and applications of phosphor materials. The first volume covers the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. New sections include the rapid developments in principal phosphors in nitrides, perovskite, and silicon carbide. The second volume provides the descriptions of synthesis and optical properties of phosphors used in different applications, including the novel phosphors for some newly developed applications. New sections on smart phosphors, quantum dots for display applications, up-conversion nanophosphors for photonic application, phosphors for solar cells. The third volume addresses the experimental methods for phosphor evaluation and characterization and the contents are widely expanded from the Second Edition, including the theoretical and experimental designs for new phosphors as well as the phosphor analysis through high pressure and synchrotron studies.
Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs. |
You may like...
Practical Grounding, Bonding, Shielding…
G. Vijayaraghavan, Mark Brown, …
Paperback
R1,427
Discovery Miles 14 270
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
My Revision Notes: Building Services…
Mike Jones, Stephen Jones, …
Paperback
R649
Discovery Miles 6 490
|