Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
Electricity has become a basic requirement in today's world. Interruption free electrical energy and availability of surplus power are entwined in improving consumers quality of life. EHT Transmission Performance Evaluation: Emerging Research and Opportunities provides emerging research on reliability aspects of components, transmission lines, and substation designs. While highlighting power system adequacy and security, readers will also see how those aspects need to be given first consideration when making continuous power available to consumers. This book is a vital resource for researchers, professionals, and academics seeking current research on EHT transmission performance.
With the widespread adoption of photovoltaic (PV) systems across the world, many researchers, industry players, and regulators have been exploring the use of reactive power from PV to support the grid. This thesis is the first to comprehensively quantify and analyse the techno-economic cost and benefits of reactive power support using PV. On top of formulating the cost of PV reactive power and identifying the feasible range of its monetary incentives, this thesis has also proposed practical methods to implement the reactive power dispatch effectively and efficiently, with and without communication infrastructure. The findings and approaches in this work can therefore help power system planners and operators towards better integration of PV into the electrical grid, both in terms of regulation and implementation.
This book discusses recent advances in cyber-physical power systems (CPPS) in the modeling, analysis and applications of smart grid. It introduces a series of models, such as an analysis of interaction between the power grid and the communication network, differential protection in smart distribution systems, data flow for VLAN-based communication in substations, a co-simulation model for investigating the impacts of cyber-contingency and distributed control systems as well as the analytical techniques used in different parts of cyber physical energy systems. It also discusses methods of cyber-attack on power systems, particularly false data injection. The results presented are a comprehensive summary of the authors' original research conducted over a period of 5 years. The book is of interest to university researchers, R&D engineers and graduate students in power and energy systems.
Focusing on non-intrusive load monitoring techniques in the area of smart grids and smart buildings, this book presents a thorough introduction to related basic principles, while also proposing improvements. As the basis of demand-side energy management, the non-intrusive load monitoring techniques are highly promising in terms of their energy-saving and carbon emission reduction potential. The book is structured clearly and written concisely. It introduces each aspect of these techniques with a number of examples, helping readers to understand and use the corresponding results. It provides latest strengths on the non-intrusive load monitoring techniques for engineers and managers of relevant departments. It also offers extensive information and a source of inspiration for researchers and students, while outlining future research directions.
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors; actuators; micro- and nano-structured materials; mechanisms of interaction and signal transduction; polymers and biomaterials; sensor electronics and instrumentation; analytical microsystems, recognition systems and signal analysis; and sensor networks, as well as manufacturing technologies, environmental, food and biomedical applications. The book gathers a selection of papers presented at the 20th AISEM National Conference on Sensors and Microsystems, held in Naples, Italy in February 2019, the event brought together researchers, end users, technology teams and policy makers.
This book combines comprehensive multi-angle discussions on fully connected and automated vehicle highway implementation. It covers the current progress of the works towards autonomous vehicle highway development, which encompasses the discussion on the technical, social, and policy as well as security aspects of Connected and Autonomous Vehicles (CAV) topics. This, in return, will be beneficial to a vast amount of readers who are interested in the topics of CAV, Automated Highway and Smart City, among many others. Topics include, but are not limited to, Autonomous Vehicle in the Smart City, Automated Highway, Smart-Cities Transportation, Mobility as a Service, Intelligent Transportation Systems, Data Management of Connected and Autonomous Vehicle, Autonomous Trucks, and Autonomous Freight Transportation. Brings together contributions discussing the latest research in full automated highway implementation; Discusses topics such as autonomous vehicles, intelligent transportation systems, and smart highways; Features contributions from researchers, academics, and professionals from a broad perspective.
This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.
This easy-to-understand book discusses applications of current technologies and the foundations for their extension into emerging areas in the future. It includes research presented at two conferences: 5th International IBM Cloud Academy Conference, 2017, held in Wroclaw, Poland. 5th Asia-Pacific Conference on Computer Assisted and System Engineering, 2017, held in Guilin, China. These conferences focused on system and application engineering, including achievements in the interdisciplinary topics of cloud computing, big data, IoT and mobile communications. Featuring 19 chapters, the book has the potential to influence current and future research and applications combining the best attributes of computing, mathematics, artificial intelligence, biometrics and software engineering to create a comprehensive research application domain.
Loop control is an essential area of electronics engineering that today's professionals need to master. A control system is a complex electronics architecture involving setpoints and targets. One simple example is the cruise control system of an automobile. Rather than delving into extensive theory, this practical book focuses on what power electronics engineers really need to know for compensating or stabilizing a given system. Engineers can turn instantly to practical sections with numerous design examples and ready-made formulas to help them with their projects in the field. Readers also find coverage of the underpinnings and principles of control loops so they can gain a more complete understanding of the material. This authoritative volume explains how to conduct analysis of control systems and provides extensive details on practical compensators. It helps engineers measure their system, showing how to verify if a prototype is stable and features enough design margin. Moreover, professionals learn how to secure high-volume production by bench-verified safety margins.
This book is a collection of selected research papers presented at the International Conference on Innovations in Electrical and Electronics Engineering (ICIEEE 2019), which was organized by the Guru Nanak Institutions, Ibrahimpatnam, Hyderabad, Telangana, India, on July 26-27, 2019. The book highlights the latest developments in electrical and electronics engineering, especially in the areas of power systems, power electronics, control systems, electrical machinery, and renewable energy. The solutions discussed here will encourage and inspire researchers, industry professionals, and policymakers to put these methods into practice.
This book discusses theoretical and experimental advances in metamaterial structures, which are of fundamental importance to many applications in microwave and optical-wave physics and materials science. Metamaterial structures exhibit time-reversal and space-inversion symmetry breaking due to the effects of magnetism and chirality. The book addresses the characteristic properties of various symmetry breaking processes by studying field-matter interaction with use of conventional electromagnetic waves and novel types of engineered fields: twisted-photon fields, toroidal fields, and magnetoelectric fields. In a system with a combined effect of simultaneous breaking of space and time inversion symmetries, one observes the magnetochiral effect. Another similar phenomenon featuring space-time inversion symmetries is related to use of magnetoelectric materials. Cross-coupling of the electric and magnetic components in these material structures, leading to the appearance of new magnetic modes with an electric excitation channel - electromagnons and skyrmions - has resulted in a wealth of strong optical effects such as directional dichroism, magnetochiral dichroism, and rotatory power of the fields. This book contains multifaceted contributions from international leading experts and covers the essential aspects of symmetry-breaking effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement. It is ideally suited as an introduction and basic reference work for researchers and graduate students entering this field.
This book explains the fundamentals of control theory for Internet of Things (IoT) systems and smart grids and its applications. It discusses the challenges imposed by large-scale systems, and describes the current and future trends and challenges in decision-making for IoT in detail, showing the ongoing industrial and academic research in the field of smart grid domain applications. It presents step-by-step design guidelines for the modeling, design, customisation and calibration of IoT systems applied to smart grids, in which the challenges increase with each system's increasing complexity. It also provides solutions and detailed examples to demonstrate how to use the techniques to overcome these challenges, as well as other problems related to decision-making for successful implementation. Further, it anaylses the features of decision-making, such as low-complexity and fault-tolerance, and uses open-source and publicly available software tools to show readers how they can design, implement and customise their own system control instantiations. This book is a valuable resource for power engineers and researchers, as it addresses the analysis and design of flexible decision-making mechanisms for smart grids. It is also of interest to students on courses related to control of large-scale systems, since it covers the use of state-of-the-art technology with examples and solutions in every chapter. And last but not least, it offers practical advice for professionals working with smart grids.
This book provides readers with a single-source reference to current sensing integrated circuit design. It is written in handbook style, including systematic guidelines and implementation examples. The authors focus on the implementation of wide-bandwidth current sensing on a single microchip, toward usage in applications such as sensing, control and optimization of the energy flow in growth areas like industrial electronics, renewable energies, smart grids, electromobility and the Internet of Things. Provides readers with a comprehensive, all-in-one source for current sensing integrated circuit design, including implementation examples; Discusses modeling and optimization of on-chip Rogowski coil and Hall sensor in both lateral and vertical orientation; Includes noise reduction techniques, such as auto-zeroing and chopping; Covers open-loop and closed-loop sensor front-end design; Presents the first on-chip current sensor with a planar coil placed besides a power line to measure internal signal currents and the first off-chip current sensor with a helix-shaped coil for external signal currents in the multi-MHz region.
This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover. The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.
This book is a compilation of recent research on distributed optimization algorithms for the integral load management of plug-in electric vehicle (PEV) fleets and their potential services to the electricity system. It also includes detailed developed Matlab scripts. These algorithms can be implemented and extended to diverse applications where energy management is required (smart buildings, railways systems, task sharing in micro-grids, etc.). The proposed methodologies optimally manage PEV fleets' charge and discharge schedules by applying classical optimization, game theory, and evolutionary game theory techniques. Taking owner's requirements into consideration, these approaches provide services like load shifting, load balancing among phases of the system, reactive power supply, and task sharing among PEVs. The book is intended for use in graduate optimization and energy management courses, and readers are encouraged to test and adapt the scripts to their specific applications.
This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2020) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Maisammaguda, Hyderabad, India, during August 21-22, 2020. It covers topics in the areas of automation, manufacturing technology and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy and energy sustainability.
This book opens up new ways to develop mathematical models and optimization methods for interdependent energy infrastructures, ranging from the electricity network, natural gas network, district heating network, and electrified transportation network. The authors provide methods to help analyze, design, and operate the integrated energy system more efficiently and reliably, and constitute a foundational basis for decision support tools for the next-generation energy network. Chapters present new operation models of the coupled energy infrastructure and the application of new methodologies including convex optimization, robust optimization, and equilibrium constrained optimization. Four appendices provide students and researchers with helpful tutorials on advanced optimization methods: Basics of Linear and Conic Programs; Formulation Tricks in Integer Programming; Basics of Robust Optimization; Equilibrium Problems. This book provides theoretical foundation and technical applications for energy system integration, and the the interdisciplinary research presented will be useful to readers in many fields including electrical engineering, civil engineering, and industrial engineering.
Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.
This book proposes the air insulation prediction theory and method in the subject of electrical engineering. Prediction of discharge voltage in different cases are discussed and worked out by simulation. After decades, now bottlenecks of traditional air discharge theories can be solved with this book. Engineering applications of the theory in air gap discharge voltage prediction are introduced. This book serves as reference for graduate students, scientific research personnel and engineering staff in the related fields.
This volume presents the selected papers of the First International Conference on Fundamental Research in Electrical Engineering, held at Khwarazmi University, Tehran, Iran in July, 2017. The selected papers cover the whole spectrum of the main four fields of Electrical Engineering (Electronic, Telecommunications, Control, and Power Engineering).
This book provides comprehensive coverage of the new wide-bandgap semiconductor gallium oxide (Ga2O3). Ga2O3 has been attracting much attention due to its excellent materials properties. It features an extremely large bandgap of greater than 4.5 eV and availability of large-size, high-quality native substrates produced from melt-grown bulk single crystals. Ga2O3 is thus a rising star among ultra-wide-bandgap semiconductors and represents a key emerging research field for the worldwide semiconductor community. Expert chapters cover physical properties, synthesis, and state-of-the-art applications, including materials properties, growth techniques of melt-grown bulk single crystals and epitaxial thin films, and many types of devices. The book is an essential resource for academic and industry readers who have an interest in, or plan to start, a new R&D project related to Ga2O3.
This book reviews the applications, technologies, standards, and other issues related to Smart Cities. The book is divided into broad topical sections including Vision & Reality, Technologies & Standards, Transportation Considerations, and Infrastructure & Environment. In these sections, authors who are experts in their fields present essential aspects of applications, technologies, requirements, and best-practices. In all cases, the authors have direct, substantive experience with the subject and present an important viewpoint driven by industry or governmental interests; the authors have each participated in the development and/or deployment of constituent technologies, standards, and applications, and share unique perspectives on key areas of the Smart City. |
You may like...
The Bell System Technical Journal…
American Telephone and Telegraph Comp
Hardcover
R1,023
Discovery Miles 10 230
My Revision Notes: Building Services…
Mike Jones, Stephen Jones, …
Paperback
R592
Discovery Miles 5 920
Modernization of Electric Power Systems…
Ahmed F. Zobaa, Shady H.E Abdel Aleem
Hardcover
R4,299
Discovery Miles 42 990
Control Systems in Engineering and…
P. Balasubramaniam, Sathiyaraj Thambiayya, …
Hardcover
|