![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Agriculture & farming > Agricultural engineering & machinery > General
The Impact of Nanoparticles on Agriculture and Soil, part of the Nanomaterials-Plant Interaction series, contributes the most recent insights into understanding the cellular interactions of nanoparticles in an agricultural setting, focusing on current applications and means of evaluating future prospects. In order to ensure and improve the biosafety of nanoparticles, it is a primary concern to understand cellular bioprocess like nanomaterial's cellular uptake and their influence on cellular structural, functional and genetic components. This book addresses these and other important aspects in detail along with showcasing their applications in the area of agriculture. With an international team of authors, and experienced editors, this book will be valuable to those working to understand and advance nanoscience to benefit agricultural production and human and environmental welfare. In-depth knowledge of these bioprocess will enable researchers to engineer nanomaterials for enhanced biosafety.
The increasing demand for food as well as changes in consumption habits have led to the greater availability and variety of food with a longer shelf life. However, these items, when not properly preserved, can lead to severe food-borne illnesses that can be fatal. Thus, countless studies are now geared towards the processing, distributing, and safe storage of foods. Novel Technologies and Systems for Food Preservation is an essential reference source that discusses novel and emerging cooling and heating technologies, processes, and systems for food preservation, as well as improvements for control and monitoring systems that aim to foster energy efficiency, equipment safety, and performance. Additionally, it looks at concepts that may be useful for the development of new policies and legislation concerning food preservation. Featuring research on topics such as energy efficiency, food quality, and legislation policies, this book is ideally designed for government officials, policymakers, food and service industry professionals, food safety inspectors, researchers, academicians, and students.
Halophytes for Food Security in Dry Lands addresses the concerns surrounding global food scarcity, especially focusing on those living in arid and dry lands The book touches on food crises in dry regions of the world and proposes halophytes as an alternate source of consumption for such areas. Halophytes, those plants that thrive in saline soil and provide either food source options themselves, or positively enhance an eco-system's ability to produce food, and are thus an important and increasingly recognized option for addressing the needs of the nearly 1/6 of the world's population that lives in these arid and semi-arid climates. Including presentations from the 2014 International Conference on Halophytes for Food Security in Dry Lands, this book features insights from the leading researchers in the subject. It is a valuable resource that includes information on the nutritional value of halophytes, their genetic basis and potential enhancement, adaption of halophytes, and lessons learned thus far.
Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource.
This book shares the latest findings on this topic, systematically introduces readers to advances made in robotic harvesting around the globe, and explores the relations between the development of robotic harvesting and the respective social/economic conditions and agricultural business patterns in various countries/regions. Due to the unstructured setting it is used in, and to the significant differences between individual fruit and vegetable targets, robotic harvesting is currently considered to be one of the most challenging robotics technologies. Accordingly, research into this area involves the integration of various aspects, including biomechanics, optimization design, advanced perception and intelligent control. In addition to rapid and damage-free robotic harvesting, which reflects the multidisciplinary nature of the topic, further aspects addressed include gripping collisions with viscoelastic objects, using lasers to cut plant material, plant-fruit response to vacuum sucking and pulling, and performance probability distribution. Highlighting outstanding innovations and reflecting the latest advances in intelligent agricultural equipment in China, the book offers a unique and valuable resource.
The use of plastics in agriculture - to increase crop output, improve food quality and improve sustainability - has grown substantially in both quantity and the range of applications. Many of the early researchers that conducted field research in the use of plastics in agriculture have either retired or are deceased. These early pioneers in plasticulture research, the basis of plant production using plastics, were very creative and persistent in discovering uses of plastics in agricultural applications. A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture contains both references not only to their accomplishments but also their publications. The book discusses plasticulture-the basis of plant production using plastics - including topics such as plastic mulch, row covers, drip irrigation, and high/low tunnels. It covers the process of producing polyethylene and polypropylene plastics that are used in plant and animal production agriculture, and the many uses of plastics in all aspects of agriculture, including plastic greenhouses, rigid mold plastics, disposal of plastics, and plastics in animal production. This book introduces a range of academics and industrial practitioners to the impact of plastics in agriculture, both historically and in a range of current applications. It also provides new perspectives on future developments to enable further research and application. It is an invaluable reference on the use of polyethylene, polypropylene films, and such products in all aspects of agricultural production.
Martha M. Ezzard and her physician husband John are among the pioneers in the movement of professionals trading busy city careers for a return to the land. While this story about saving a family farm is distinctly Southern, it typifies the national locally grown movement which has begun to sweep the US. Locally grown foods call for wines that are a taste of the local earth-what wine aficionados call the terroir, the soils and climate that give them unique flavours not found in California or Burgundy or anywhere other than, in this case, Tiger Mountain. What follows initially are long sweaty days of post hole digging, trellis wire stringing, and weed pulling mixed with a few chiggers and ticks-but also the thrill of sighting a giant blue heron in the dawn mist of the farm pond-of hearing the honking of geese at sunset. There are times when the city high rise still beckons, but what Martha and John learn after burning smudge pots all night in a late April freeze only to see their pink buds turn brown despite it all, is that wine grapes have a second bud -and so too, because of their shared venture, does their relationship. The Second Bud is a story that reflects today's agricultural evolution in the southeast, from tobacco, logging, and truck farming to agri-tourism, outdoor recreation, vineyards, and farm wineries. Filled with small town characters, unlikely obstacles and dirt based success, this memoir is a down home version of "Under a Tuscan Sun," a couple's risk taking to revive a fifth-generation family farm in the tiny North Georgia town of Tiger by cultivating fine wine grapes. It will appeal to romantics, wannabe winemakers, and all who covet the rural life.
In recent years, there has been growing attention devoted to the implementation of information and communication technology in agriculture and rural development. While evidence has linked ICT to an increase in gross domestic product, it has prompted a global dedication to the research of the socio-economic benefits, trade-offs, and policy implications of ICT consumption in developing countries. E-Agriculture and Rural Development: Global Innovations and Future Prospects is a comprehensive collection of research on the emerging trends and advances in the global use of information and communication technology in agriculture and rural development. Consisting of case studies, implementation frameworks, and policies, this book provides a global perspective and understanding of the developments in e-agriculture and rural development.
This book provides a global review of the mechanisms, incidence and control measures related to the problems of soil compaction in agriculture, forestry and other cropping systems. Among the disciplines which relate to this subject are soil physics, soil mechanics, vehicle mechanics, agricultural engineering, plant physiology, agronomy, pedology, climatology and economics. The volume will be of great value to soil scientists, agricultural engineers, and all those involved with irrigation, drainage and tillage. It will help to facilitate the exchange of information on current work throughout the world, as well as to promote scientific understanding and stimulate the development, evaluation and adoption of practical solutions to these widespread and urgent problems.
Carbon Dots in Agricultural Systems integrates and crystallizes the emerging knowledge and application strategies of carbon dots as a powerful tool in agriculture systems. The book includes practical insights into the synthesis of carbon dots from indigenous raw materials and how to employ them in agriculture systems to increase crop productivity and provide renewable and cost-effective strategies that meet agricultural needs. Presented by an international team of experts, this resource updates on the latest in synthesis, physical, chemical and optical properties, along with the effects and mechanisms of carbon dots, all further explained in real-world studies. Finally, the book highlights emerging innovative topics which are of great relevance to scientists, academicians and innovators in agriculture (soil science, agricultural chemistry and agronomy) and biotechnology for further research and development.
We are facing global issues concerning environmental pollution and shortages of food, feed, phytomass (plant biomass) and natural resources, which will become more serious in the forthcoming decades. To solve these issues, immeasurable numbers of various plants and huge amounts of phytomass are required every year for food, feed and for the improvement of amenities, the environment and our quality of life. Increased phytomass is also required as alternative raw material for producing bio-energy, biodegradable plastics and many other plant-originated industrial products. Only by using phytomass as a reproducible energy source and raw material, instead of fossil fuels and atomic power, we can save natural resources and minimize environmental pollution. To increase phytomass globally, we need billions of quality transplants (small plants) to be grown yearly, in the field or in the greenhouse, under various environmental conditions. However, these high quality transplants can be produced only under carefully controlled, rather than variable environment al conditions. Recent research has shown that the closed transplant production system requires considerably small amounts of electricity, water, fertilizer, CO) and pesticide to produce value-added transplants as scheduled with minimum release of environmental pollutants and minimum loss of transplants. The closed or closed-type transplant production system is defined as a transplant production system covered with opaque walls with minimized or controlled ventilation rates, using artificial lighting. With this system, photoperiod, light intensity and quality, air temperature, humidity, CO) concentration and air current speed can be controlled as desired.
This volume contains a total of thirteen papers covering a variety of AI topics ranging from computer vision and robotics to intelligent modeling, neural networks and fuzzy logic. There are two general articles on robotics and fuzzy logic. The article on robotics focuses on the application of robotics technology in plant production. The second article on fuzzy logic provides a general overview of the basics of fuzzy logic and a typical agricultural application of fuzzy logic. The article End effectors for tomato harvesting' enhances further the robotic research as applied to tomato harvesting. The application of computer vision techniques for different biological/agricultural applications, for example, length determination of cheese threads, recognition of plankton images and morphological identification of cotton fibers, depicts the complexity and heterogeneities of the problems and their solutions. The development of a real-time orange grading system in the article Video grading of oranges in real-time' further reports the capability of computer vision technology to meet the demand of high quality food products. The integration of neural network technology with computer vision and fuzzy logic for defect detection in eggs and identification of lettuce growth shows the power of hybridization of AI technologies to solve agricultural problems. Additional papers also focus on automated modeling of physiological processes during postharvest distribution of agricultural products, the applications of neural networks, fusion of AI technologies and three dimensional computer vision technologies for different problems ranging from botanical identification and cell migration analysis to foodmicrostructure evaluation.
This book examines the implications of the net zero transition for food and farming in the UK and how these can be managed to avoid catastrophic climate change in the crucial decades ahead. For the UK to meet its international obligations for reducing greenhouse gas emissions, nothing short of a revolution is required in our use of land, our farming practices and our diet. Taking a historical approach, the book examines the evolution of agriculture and the food system in the UK over the last century and discusses the implications of tackling climate change for food, farming and land use, setting the UK situation in an international context. The chapters analyse the key challenges for this transition, including dietary change and food waste, afforestation and energy crops, and low-emission farming practices. This historical perspective helps develop an understanding of how our food, farming and land use system has evolved to be the way that it is, and draws lessons for how the agri-food system could evolve further to support the transition to net zero and avoid catastrophic climate change. Written in a clear and accessible style, this book will be essential reading to students and scholars of food, agriculture and the environment, as well as policymakers and professionals involved climate change policy and the agriculture and food industry.
The rise in population and the concurrently growing consumption rate necessitates the evolution of agriculture to adopt current computational technologies to increase production at a faster and smoother scale. While existing technologies may help in crop processing, there is a need for studies that seek to understand how modern approaches like artificial intelligence, fuzzy logic, and hybrid algorithms can aid the agricultural process while utilizing energy sources efficiently. The Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering is an essential publication that examines the benefits and barriers of implementing computational models to agricultural production and energy sources as well as how these models can produce more cost-effective and sustainable solutions. Featuring coverage on a wide range of topics such as bacterial foraging, swarm intelligence, and combinatorial optimization, this book is ideally designed for agricultural engineers, farmers, municipal union leaders, computer scientists, information technologists, sustainable developers, managers, environmentalists, industry professionals, academicians, researchers, and students.
Plant Factory Basics, Applications, and Advances takes the reader from an overview of the need for and potential of plant factories with artificial lighting (PFALs) in enhancing food production and security to the latest advances and benefits of this agriculture environment. Edited by leading experts Toyoki Kozai, Genhua Niu, and Joseph Masabni, this book aims to provide a platform of PFAL technology and science, including ideas on its extensive business and social applications towards the next-generation PFALs. The book is presented in four parts: Introduction, Basics, Applications, and Advanced Research. Part 1 covers why PFALs are necessary for urban areas, how they can contribute to the United Nations' Sustainable Development Goals, and a definition of PFAL in relation to the term "indoor vertical farm." Part 2 presents SI units and radiometric, photometric, and photonmetric quantities, types, components, and performance of LED luminaires, hydroponics and aquaponics, and plant responses to the growing environment in PFALs. Part 3 describes the indexes and definition of various productivity aspects of PFAL, provides comparisons of the productivity of the past and the present operation of any given PFALs, and compares PFALs with one another from the productivity standpoint by applying the common indexes. Part 4 describes the advances in lighting and their effects on plant growth, breeding of indoor and outdoor crops, production of fruiting vegetables and head vegetables, and concluding with a focus on a human-centered perspective of urban agriculture. Providing real-world insights and experience, Plant Factory Basics, Applications, and Advances is the ideal resource for those seeking to take the next step in understanding and applying PFAL concepts.
During the last few years, many journal articles have shown the usefulness of the Additive Main Effects and Multiplicative Interaction (AMMI) model for analyzing regional yield trials. AMMI helps agronomists and breeders in several ways: to understand or model complex data sets, especially the interactions; to estimate yields more accurately, even with less data; to make better selections; and to design more efficient yield-trial experiments. This book is the first systematic treatment of these topics, collecting concepts from the scattered literature and also presenting many new results. Although agricultural applications are emphasized here, AMMI is applicable to two-way data tables containing one kind of data, either replicated or not, so AMMI appears in many areas of science and technology. The volume's first seven chapters review the agricultural and statistical principles and the final chapter indicates the difference that AMMI can make for agricultural research and world food supplies. This book will be of great value to agricultural scientists throughout the world, enabling them to learn more from their data and thereby make greater progress.
In order to meet food needs, farmers need to integrate the latest technologies enabling them to make more informed decisions. Smart Farming Technologies for Sustainable Agricultural Development provides innovative insights into the latest farming advancements in terms of informatics and communication. The content within this publication represents the work of topics such as sensor systems, wireless communication, and the integration of the Internet of Things in agriculture-related processes. It is a vital reference source for farmers, academicians, researchers, government agencies, technology developers, and graduate-level students seeking current research on smart farming technologies.
The frrst attempts to use physical methods in agriculture can be found in nineteenth century as a necessary component of farm and food machinery. There were mechanics, electricity and physical chemistry that were the first physical disciplines used in agriculture and food industry. In the same time period the studies on physical properties of soils started to be one of main topics of soil science. The twentieth century was a century of research on physical properties of agromaterials. The physical properties of agromaterials have been studied e. g. in the USA, where a big role has been played by ASAE (1907), and in the Soviet Union where the special Institute of Agrophysics was founded (1932) by Academician Ioffe. The ASAE's activity was enlarged in 1960s and 1970s, especially with the role playing by the Mohsenin's group and its followers. At that time the Institute of Agrophysics of Polish Academy of Sciences was founded in Lublin and conferences on physical methods in agriculture began to be organised. The participants of the last conference - "Physical Methods in Agriculture - Approach to Precision and Quality," held on August 27-30, 2001, have prepared the basis for this book. Part of the conference participants decided to enlarge their conference papers to be more general and more instructive in relation to further development of the science. New papers prepared under this deciSion were reviewed, discussed and revised, repeatedly, to be presented in this book.
Irrigated agriculture and the use of water resources in agriculture face the challenges of sustainable development. Research has advanced our knowledge of water use by crops, soil-water-solutes interactions, and the engineering and managerial tools needed to mobilize, convey, distribute, control and apply water for agricultural production. However, the achievements booked in user practice have revealed the need for new developments in the areas of resource conservation, control of environmental and health impacts, modernisation of technologies and management, economic viability and the social acceptance of changes. The contributions to Sustainability of Irrigated Agriculture cover most of the relevant disciplines. Besides its multidisciplinarity, the different origins, experience, backgrounds and practices of the authors provide a wide, in-depth analysis of the various aspects of water resource utilization in agriculture. The papers review scientific, technical and managerial aspects, highlighting the main problems, issues and future developments. The book covers the different aspects of sustainability, including environmental, technical, economic, institutional and social ones. Advances in irrigation science and engineering are dealt with, both on- and off-farm. Special attention is paid to the different components of water quality management, to the transfer of technology, and to capacity building.
Fresh? Juice? Paste? Canned? Stewed? Diced? Pureed? Sun Dried? Salsa? Sauce? Ketchup? Rare is the cuisine that does not make use of the tomato in some way, shape, or form, and the resulting culinary popularity of the tomato has led to its proliferation in fields and farms around the world. While some may still argue whether the tomato is a fruit or a vegetable, few would argue that tomato crops are highly lucrative, attractive to farmers in both developing and developed countries and on large and small farms alike. In fact, for those crops with significant global volume and market share, tomatoes are the highest valued among those crops that lack an affiliation to mind-altering drugs. But, the tomato can be a persnickety critter. The tomato doesn't like it too hot, too chilly, too wet, too dry, or too fertile. Many don't ripen at the same time. Most are easily bruised. And, the selective breeding that has yielded a larger, more attractive, and deep red tomato has also mercilessly drained much of the taste and flavor from a once sweet and delectable fruit. Enter the world of sensors and modern sensing technology. The Internet of Things (IOT), when using well chosen, well networked, and well aggregated sensors, has shown tremendous potential to support precision agriculture, providing a more detailed picture of crops than was previously possible using conventional crop monitoring techniques. But, the stringent resources and tight profit margins that are a fact of life among many tomato growing operations, large and small, mean that sensor technologies must be chosen and used carefully. There is no doubt that each sensor must earn its keep in producing the perfect tomato. With that in mind, this book explores key opportunities to marry the potential of sensors that are networked within the IOT to the needs of tomato production in ways that are economically fruitful, technologically robust, and sustainable overall.
Urban and Regional Agriculture: Building Resilient Food Systems explores the sustainable integration of food provision, distribution and consumption through urban farms, agricultural systems, user communities and structural facilities designed to optimize food production and consumption. The book addresses the fundamental and pressing challenges of urban planning problems, waste minimization, food sourcing, access and equity issues, and multiple land use optimization. Sections cover the need and opportunities of urban agriculture, discuss tradition and transition, space and regulatory topics, explore the range of urban agriculture options (aquaculture to urban permaculture), discuss support structures and constructs of physically creating urban agricultural areas, and much more. Edited and authored by leading experts in the field, this volume will be valuable for those working to address issues of food security in urban environments. |
![]() ![]() You may like...
The Soybean Through World History…
Lisa Deutsch, Matilda Baraibar Norberg
Hardcover
R4,067
Discovery Miles 40 670
Agricultural Nanobiotechnology…
Sougata Ghosh, Sirikanjana Thongmee, …
Paperback
R3,586
Discovery Miles 35 860
Genetic Resources of Mediterranean…
Sarita Jane Bennett, P.S. Cocks
Hardcover
R5,721
Discovery Miles 57 210
Nano-enabled Agrochemicals in…
Mansour Ghorbanpour, Muhammad Adnan Shahid
Paperback
R3,612
Discovery Miles 36 120
AI, Edge and IoT-based Smart Agriculture
Ajith Abraham, Sujata Dash, …
Paperback
R4,153
Discovery Miles 41 530
Polyface Designs - A Comprehensive…
Joel Salatin, Chris Slattery
Paperback
Tissue Culture in Forestry and…
Randolph R. Henke, Karen W. Hughes, …
Hardcover
R5,945
Discovery Miles 59 450
|