Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Computer graphics software > General
This book collects the lectures given at the NATO Advanced Study Institute From Identijication to Learning held in Villa Olmo, Como, Italy, from August 22 to September 2, 1994. The school was devoted to the themes of Identijication, Adaptation and Learning, as they are currently understood in the Information and Contral engineering community, their development in the last few decades, their inter connections and their applications. These titles describe challenging, exciting and rapidly growing research areas which are of interest both to contral and communication engineers and to statisticians and computer scientists. In accordance with the general goals of the Institute, and notwithstanding the rat her advanced level of the topics discussed, the presentations have been generally kept at a fairly tutorial level. For this reason this book should be valuable to a variety of rearchers and to graduate students interested in the general area of Control, Signals and Information Pracessing. As the goal of the school was to explore a common methodologicalline of reading the issues, the flavor is quite interdisciplinary. We regard this as an original and valuable feature of this book."
The book addresses the relationship between knowledge, complexity and innovation systems. It integrates research findings from a broad area including economics, business studies, management studies, geography, mathematics and science & technology contributions from a wide range group of international experts. In particular, it offers insights about knowledge creation and spillovers, innovation and learning systems, innovation diffusion processes and innovation policies.The contributions provide an excellent coverage of current conceptual and theoretical developments and valuable insights from both empirical and conceptual work. The reader gets an overview about the state of the art of the role of innovation systems and knowledge creation and diffusion in geographical space.
The focus of this volume is comprised of the fundamentals, models, and information technologies (IT) methods and tools for disaster prediction and mitigation. A more detailed list of topics includes mathematical and computational modeling of processes leading to or producing disasters, modeling of disaster effects, IT means for disaster mitigation, including data mining tools, knowledge-based and expert systems for use in disaster circumstances, GIS-based systems for disaster prevention and mitigation and equipment for disaster-prone areas. A specific type or class of disasters (natural or human-made), however will not be part of the main focus of this work. Instead, this book was conceived to offer a comprehensive, integrative view on disasters, seeking to determine what various disasters have in common. Because disaster resilience and mitigation involve humans, societies and cultures, not only technologies and economic models, special attention was paid in this volume to gain a comprehensive view on these issues, as a foundation of the IT tool design.
3. 8 Problems . . . 66 4 ENABLING REUSE 69 4. 1 Concepts . . . . . . . . 69 4. 2 Exploiting commonality 70 4. 3 Reusable building blocks 71 4. 4 Allowing replaceable components 75 4. 5 Other replaceable entities 79 4. 6 Limiting flexibility . . . 82 4. 7 Other considerations . . 84 4. 8 Language fundamentals 85 4. 9 Problems . . . . . . . . 88 5 FUNCTIONS 91 5. 1 Concepts . . . . . . . . 91 5. 2 Introduction to functions 92 5. 3 An interpolation function 94 5. 4 Multiple return values 96 97 5. 5 Passing records as arguments 5. 6 Using extemal subroutines 100 5. 7 Language fundamentals 102 5. 8 Problems . . . . . . . . 110 6 USING ARRAYS 113 6. 1 Concepts . . . . . . . . . . . . . . . . . . 113 6. 2 Planetary motion: Arrays of components . . 113 6. 3 Simple ID heat transfer: Arrays of variables 120 6. 4 Using arrays with chemical systems 132 6. 5 Language fundamentals 143 6. 6 Problems . . . . . . . . . . . . . . 152 7 HYBRID MODELS 155 7. 1 Concepts . . . . . . . . 155 7. 2 Modeling digital circuits 155 7. 3 Bouncing ball . . . . . . 162 7. 4 Sensor modeling . . . . 166 7. 5 Language fundamentals 178 7. 6 Problems . . . . . . . . 186 8 EXPLORING NONLINEAR BEHAVIOR 189 8. 1 Concepts . . . 189 8. 2 An ideal diode 189 8. 3 Backlash . . . 193 8. 4 Thermal properties 199 Contents vii 8. 5 Hodgkin-Huxley nerve cell models 203 8. 6 Language fundamentals 206 8. 7 Problems . . . . . . . . . . . . . . 210 9 MISCELLANEOUS 213 9. 1 Lookup rules 213 9. 2 Annotations . . 225 Part II Effective Modelica 10 MULTI-DOMAIN MODELING 231 10. 1 Concepts . . . . . . . . . 231 231 10. 2 Conveyor system . . . . .
3D rotation analysis is widely encountered in everyday problems thanks to the development of computers. Sensing 3D using cameras and sensors, analyzing and modeling 3D for computer vision and computer graphics, and controlling and simulating robot motion all require 3D rotation computation. This book focuses on the computational analysis of 3D rotation, rather than classical motion analysis. It regards noise as random variables and models their probability distributions. It also pursues statistically optimal computation for maximizing the expected accuracy, as is typical of nonlinear optimization. All concepts are illustrated using computer vision applications as examples. Mathematically, the set of all 3D rotations forms a group denoted by SO(3). Exploiting this group property, we obtain an optimal solution analytical or numerically, depending on the problem. Our numerical scheme, which we call the "Lie algebra method," is based on the Lie group structure of SO(3). This book also proposes computing projects for readers who want to code the theories presented in this book, describing necessary 3D simulation setting as well as providing real GPS 3D measurement data. To help readers not very familiar with abstract mathematics, a brief overview of quaternion algebra, matrix analysis, Lie groups, and Lie algebras is provided as Appendix at the end of the volume.
Some recent fuzzy database modeling advances for the
non-traditional applications are introduced in this book. The focus
is on database models for modeling complex information and
uncertainty at the conceptual, logical, physical design levels and
from integrity constraints defined on the fuzzy relations.
This text describes computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. Included in the two-dimensional program are Maxwell's equations, and thermal and radiation diffusion. The numerical procedures described in the text permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.
Modeling and Simulation: Theory and Practice provides a comprehensive review of both methodologies and applications of simulation and modeling. The methodology section includes such topics as the philosophy of simulation, inverse problems in simulation, simulation model compilers, treatment of ill-defined systems, and a survey of simulation languages. The application section covers a wide range of topics, including applications to environmental management, biology and medicine, neural networks, collaborative visualization and intelligent interfaces. The book consists of 13 invited chapters written by former colleagues and students of Professor Karplus. Also included are several short 'reminiscences' describing Professor Karplus' impact on the professional careers of former colleagues and students who worked closely with him over the years.
Since the first edition of this book was published seven years ago, the field of modeling and simulation of communication systems has grown and matured in many ways, and the use of simulation as a day-to-day tool is now even more common practice. With the current interest in digital mobile communications, a primary area of application of modeling and simulation is now in wireless systems of a different flavor from the traditional' ones. This second edition represents a substantial revision of the first, partly to accommodate the new applications that have arisen. New chapters include material on modeling and simulation of nonlinear systems, with a complementary section on related measurement techniques, channel modeling and three new case studies; a consolidated set of problems is provided at the end of the book.
The underlying technologies enabling the realization of recent advances in areas like mobile and enterprise computing are artificial intelligence (AI), modeling and simulation, and software engineering. A disciplined, multifaceted, and unified approach to modeling and simulation is now essential in new frontiers, such as Simulation Based Acquisition. This volume is an edited survey of international scientists, academicians, and professionals who present their latest research findings in the various fields of AI; collaborative/distributed computing; and modeling, simulation, and their integration. Whereas some of these areas continue to seek answers to basic fundamental scientific inquiries, new questions have emerged only recently due to advances in computing infrastructures, technologies, and tools. The book¿s principal goal is to provide a unifying forum for developing postmodern, AI-based modeling and simulation environments and their utilization in both traditional and modern application domains. Features and topics: * Blends comprehensive, advanced modeling and simulation theories and methodologies in a presentation founded on formal, system-theoretic and AI-based approaches * Uses detailed, real-world examples to illustrate key concepts in systems theory, modeling, simulation, object orientation, and intelligent systems * Addresses a broad range of critical topics in the areas of modeling frameworks, distributed and high-performance object-oriented simulation approaches, as well as robotics, learning, multi-scale and multi-resolution models, and multi-agent systems * Includes new results pertaining to intelligent and agent-based modeling, the relationship between AI-based reasoning and Discrete-Event System Specification, and large-scale distributed modeling and simulation frameworks * Provides cross-disciplinary insight into how computer science, computer engineering, and systems engineering can collectively provide a rich set of theories and methods enabling contemporary modeling and simulation This state-of-the-art survey on collaborative/distributed modeling and simulation computing environments is an essential resource for the latest developments and tools in the field for all computer scientists, systems engineers, and software engineers. Professionals, practitioners, and graduate students will find this reference invaluable to their work involving computer simulation, distributed modeling, discrete-event systems, AI, and software engineering.
This book focuses on the use of farm level, micro- and macro-data of cooperative systems and networks in developing new robust, reliable and coherent modeling tools for agricultural and environmental policy analysis. The efficacy of public intervention on agriculture is largely determined by the existence of reliable information on the effects of policy options and market developments on farmers' production decisions and in particular, on key issues such as levels of agricultural and non-agricultural output, land use and incomes, use of natural resources, sustainable-centric management, structural change and the viability of family farms. Over the last years, several methods and analytical tools have been developed for policy analysis using various sets of data. Such methods have been based on integrated approaches in an effort to investigate the above key issues and have thus attempted to offer a powerful environment for decision making, particularly in an era of radical change for both agriculture and the wider economy.
What is it about the structure and organisation of science and technology that has led to the spectacularly successful growth of knowledge during this century? This book explores this important and much debated question in an innovative way, by using computer simulations. The computer simulation of societies and social processes is a methodology which is rapidly becoming recognised for its potential in the social sciences. This book applies the tools of simulation systematically to a specific domain: science and technology studies. The book shows how computer simulation can be applied both to questions in the history and philosophy of science and to issues of concern to sociologists of science and technology. Chapters in the book demonstrate the use of simulation for clarifying the notion of creativity and for understanding the logical processes employed by eminent scientists to make their discoveries. The book begins with three introductory chapters. The first introduces simulation for the social sciences, surveying current work and explaining the advantages and pitfalls of this new methodology. The second and third chapters review recent work on theoretical aspects of social simulation, introducing fundamental concepts such as self organisation and complexity and relating these to the simulation of scientific discovery."
This textbook reviews the theory, applications, and latest breakthroughs in Delay Tolerant Networks (DTNs). Presenting a specific focus on Opportunistic Mobile Networks (OMNs), the text considers the influence of human aspects, and examines emerging forms of inter-node cooperation. Features: contains review terms and exercises in each chapter, with the solutions and source code available at an associated website; introduces the fundamentals of DTNs, covering OMNs, PSNs, and MOONs; describes the ONE simulator, explaining how to set up a simulation project; provides detailed insights into the development and testing of protocols, together with a set of best practices for increased productivity and optimized performance; examines human aspects in the context of communication networks, from human-centric applications to the impact of emotion on human-network interplay; proposes various schemes for inter-node cooperation in DTNs/OMNs; presents a detailed discussion on aspects of heterogeneity in DTNs.
Emerging business models, value configurations, and information technologies interact over time to create competitive advantage. Modern information technology has to be studied, understood, and applied along the time dimension of months and years, where changes are the rule. Such changes created by interactions between business elements and resources are very well suited for system dynamics modeling. ""Business Dynamics in Information Technology"" presents business-technology alignment processes, interaction processes, and decision processes, helping the reader study information technology from a dynamic, rather than a static, perspective. By introducing two simple tools from system dynamic modeling - causal loops and reference modes - the dynamic perspective will become important to both students and practitioners in the future.
"Intelligent Control" considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. "Intelligent Control "will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control."
From environmental management to land planning and geo-marketing, the number of application domains that may greatly benefit from using data enriched with spatio-temporal features is expanding very rapidly. Unfortunately, development of new spatio-temporal applications is hampered by the lack of conceptual design methods suited to cope with the additional complexity of spatio-temporal data. This complexity is obviously due to the particular semantics of space and time, but also to the need for multiple representations of the same reality to address the diversity of requirements from highly heterogeneous user communities. Conceptual design methods are also needed to facilitate the exchange and reuse of existing data sets, a must in geographical data management due to the high collection costs of the data. Yet, current practice in areas like geographical information systems or moving objects databases does not include conceptual design methods very well, if at all. This book shows that a conceptual design approach for spatio-temporal databases is both feasible and easy to apprehend. While providing a firm basis through extensive discussion of traditional data modeling concepts, the major focus of the book is on modeling spatial and temporal information. Parent, Spaccapietra and Zimanyi provide a detailed and comprehensive description of an approach that fills the gap between application conceptual requirements and system capabilities, covering both data modeling and data manipulation features. The ideas presented summarize several years of research on the characteristics and description of space, time, and perception. In addition to the authors' own data modeling approach, MADS (Modeling of Application Data with Spatio-temporal features), the book also surveys alternative data models and approaches (from industry and academia) that target support of spatio-temporal modeling. The reader will acquire intimate knowledge of both the traditional and innovative features that form a consistent data modeling approach. Visual notations and examples are employed extensively to illustrate the use of the various constructs. Therefore, this book is of major importance and interest to advanced professionals, researchers, and graduate or post-graduate students in the areas of spatio-temporal databases and geographical information systems. "For anyone thinking of doing research in this field, or who is developing a system based on spatio-temporal data, this text is essential reading." (Mike Worboys, U Maine, Orono, ME, USA) "The high-level semantic model presented and validated in this book provides essential guidance to researchers and implementers when improving the capabilities of data systems to serve the actual needs of applications and their users in the temporal and spatial domains that are so prevalent today." (Gio Wiederhold, Stanford U, CA, USA)"
The book reports on the 11th International Workshop on Railway Noise, held on 9 - 13 September, 2013, in Uddevalla, Sweden. The event, which was jointly organized by the Competence Centre Chalmers Railway Mechanics (CHARMEC) and the Departments of Applied Mechanics and Applied Acoustics at Chalmers University of Technology in Gothenburg, Sweden, covered a broad range of topics in the field of railway noise and vibration, including: prospects, legal regulations and perceptions; wheel and rail noise; prediction, measurements and monitoring; ground-borne vibration; squeal noise and structure-borne noise; and aerodynamic noise generated by high-speed trains. Further topics included: resilient track forms; grinding, corrugation and roughness; and interior noise and sound barriers. This book, which consists of a collection of peer-reviewed papers originally submitted to the workshop, not only provides readers with an overview of the latest developments in the field, but also offers scientists and engineers essential support in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.
An embedded system is loosely defined as any system that utilizes electronics but is not perceived or used as a general-purpose computer. Traditionally, one or more electronic circuits or microprocessors are literally embedded in the system, either taking up roles that used to be performed by mechanical devices, or providing functionality that is not otherwise possible. The goal of this book is to investigate how formal methods can be applied to the domain of embedded system design. The emphasis is on the specification, representation, validation, and design exploration of such systems from a high-level perspective. The authors review the framework upon which the theories and experiments are based, and through which the formal methods are linked to synthesis and simulation. A formal verification methodology is formulated to verify general properties of the designs and demonstrate that this methodology is efficient in dealing with the problem of complexity and effective in finding bugs. However, manual intervention in the form of abstraction selection and separation of timing and functionality is required. It is conjectured that, for specific properties, efficient algorithms exist for completely automatic formal validations of systems. Synchronous Equivalence: Formal Methods for Embedded Systems presents a brand new formal approach to high-level equivalence analysis. It opens design exploration avenues previously uncharted. It is a work that can stand alone but at the same time is fully compatible with the synthesis and simulation framework described in another book by Kluwer Academic Publishers Hardware-Software Co-Design of Embedded Systems: The POLIS Approach, by Balarin et al. Synchronous Equivalence: Formal Methods for Embedded Systems will be of interest to embedded system designers (automotive electronics, consumer electronics, and telecommunications), micro-controller designers, CAD developers and students, as well as IP providers, architecture platform designers, operating system providers, and designers of VLSI circuits and systems.
SISDEP a (TM)95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.
This book highlights recent developments in multidimensional data visualization, presenting both new methods and modifications on classic techniques. Throughout the book, various applications of multidimensional data visualization are presented including its uses in social sciences (economy, education, politics, psychology), environmetrics, and medicine (ophthalmology, sport medicine, pharmacology, sleep medicine). The book provides recent research results in optimization-based visualization. Evolutionary algorithms and a two-level optimization method, based on combinatorial optimization and quadratic programming, are analyzed in detail. The performance of these algorithms and the development of parallel versions is discussed. The encorporation of new visualization techniques to improve the capabilies of artificial neural networks (self-organizing maps, feed-forward networks) is also discussed. The book includes over 100 detailed images presenting examples of the different visualization techniques that are presented. This book is intended for scientists and researchers in any field of study where complex and multidimensional data must be represented visually.
This book compares existing soil erosion models and determines their suitability for predicting the impacts of global change upon soil erosion. The common datasets used for the evaluation are drawn from both temperate and semi-arid areas; they represent 73 site-years of data from seven sites in three countries. Six field-scale erosion models are evaluated; five of these are continuous-simulation types (GLEAMS, EPIC, CSEP, MEDRUSH and WEPP), the other is event-based (EUROSERM). After an introduction, the results of the model evaluation exercise are presented. Subsequent sections deal with weaknesses or omissions in current modelling approaches, descriptions of specific erosion models, and potential or actual model applications.
Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design. Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: A rigorous framework of integrating the interests from both producer and consumers in engineering design, Analytical techniques of consumer choice modelling to forecast the impact of engineering decisions, Methods for synthesizing business and engineering models in multidisciplinary design environments, and Examples of effective application of Decision-Based Design supported by case studies. No matter whether you are an engineer facing decisions in consumer related product design, an instructor or student of engineering design, or a researcher exploring the role of decision making and consumer choice modelling in design, Decision-Based Design: Integrating Consumer Preferences into Engineering Design provides a reliable reference over a range of key topics.
The book describes what these models are, what they are based on, how they function, and then, most innovatively, how they can be used to generate new useful knowledge about the environmental system. Discusses this generation of knowledge by computer models from an epistemological perspective and illustrates it by numerous examples from applied and fundamental research. Includes ample technical appendices and is a valuable source of information for graduate students and scientists alike working in the field of environmental sciences.
In GPU Pro5 Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light effects, screen-space grass, the usage of quaternions, and a quadtree implementation on the GPU. It also addresses the latest developments in deferred lighting on mobile devices, OpenCL optimizations for mobile devices, morph targets, and tiled deferred blending methods. In color throughout, GPU Pro5 is the only book that incorporates contributions from more than 50 experts who cover the latest developments in graphics programming for games and movies. It presents ready-to-use ideas and procedures that can help solve many of your daily graphics programming challenges. Example programs with source code are provided on the book s CRC Press web page."
Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals. |
You may like...
Digital Image and Video Watermarking and…
Sudhakar Ramakrishnan
Hardcover
Context in Computing - A…
Patrick Brezillon, Avelino J. Gonzalez
Hardcover
Optimal Control of Complex Structures
Karl-Heinz Hoffmann, Irena Lasiecka, …
Hardcover
R2,419
Discovery Miles 24 190
Forecast Error Correction using Dynamic…
Sivaramakrishnan Lakshmivarahan, John M. Lewis, …
Hardcover
R3,685
Discovery Miles 36 850
High Performance Computing in Science…
Wolfgang E. Nagel, Dietmar H. Kroener, …
Hardcover
R5,528
Discovery Miles 55 280
Finite Volumes for Complex Applications…
Jurgen Fuhrmann, Mario Ohlberger, …
Hardcover
R3,589
Discovery Miles 35 890
|