![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > General
This book presents a study of the use of optimization algorithms in complex image processing problems. The problems selected explore areas ranging from the theory of image segmentation to the detection of complex objects in medical images. Furthermore, the concepts of machine learning and optimization are analyzed to provide an overview of the application of these tools in image processing. The material has been compiled from a teaching perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, and can be used for courses on Artificial Intelligence, Advanced Image Processing, Computational Intelligence, etc. Likewise, the material can be useful for research from the evolutionary computation, artificial intelligence and image processing communities.
With the proliferation of social media and on-line communities in networked world a large gamut of data has been collected and stored in databases. The rate at which such data is stored is growing at a phenomenal rate and pushing the classical methods of data analysis to their limits. This book presents an integrated framework of recent empirical and theoretical research on social network analysis based on a wide range of techniques from various disciplines like data mining, social sciences, mathematics, statistics, physics, network science, machine learning with visualization techniques and security. The book illustrates the potential of multi-disciplinary techniques in various real life problems and intends to motivate researchers in social network analysis to design more effective tools by integrating swarm intelligence and data mining.
The primary aim of this volume is to provide researchers and engineers from both academia and industry with up-to-date coverage of recent advances in the fields of robotic welding, intelligent systems and automation. It gathers selected papers from the 2018 International Conference on Robotic Welding, Intelligence and Automation (RWIA 2018), held Oct 20-22, 2018 in Guangzhou, China. The contributions reveal how intelligentized welding manufacturing (IWM) is becoming an inescapable trend, just as intelligentized robotic welding is becoming a key technology. The volume is divided into four main parts: Intelligent Techniques for Robotic Welding, Sensing in Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, and Intelligent Control and its Applications in Engineering.
The book provides strong evidence that research on the cognitive processes from arithmetic thought to algebraic thought should take into consideration the socio-cultural context. It is an important contribution to the literature on linguistic structure in comparative studies related to Chinese student mathematics learning. This book not only makes a great contribution to research in mathematics education, the findings of this study also addressed insightful approaches and thoughts of understanding the development of algebraic thinking in cultural contexts for classroom teachers. Using written Chinese language from different theoretical references provided wonderful approaches for understanding student algebra cognitive development in a different way and calls educators for to pay special attention to an epistemological and linguistic view of algebraic development. The findings inform classroom teachers that the cultural context plays an important role in student learning mathematics. A typical analysis of the cognitive dimension involved in some in the historical and cultural contexts is a great resource for classroom teachers. I really enjoyed reading this book and learned a lot from its compelling analysis. Shuhua An, Associate Professor and Director of Graduate Program in Mathematics Education, California State University, Long Beach
Case-based reasoning (CBR) is an Artificial Intelligence (AI) technique to support the capability of reasoning and learning in advanced decision support systems. CBR exploits the specific knowledge collected on previously encountered and solved situations, which are known as cases. In this book, we have collected a selection of papers on very recent CBR applications. These, after an in-depth analysis of their specific application domain needs, propose proper methodological solutions and give encouraging evaluation results, which have in some cases led to the commercialization step. The collected contributions demonstrate the capability of CBR to solve or handle issues which would be too difficult to manage with other classical AI methods and techniques, such as rules or models. The heterogeneity of the involved application domains indicates the flexibility of CBR, and its applicability in all those fields where experiential knowledge is (readily) available.
The book discusses intelligent system design using soft computing and similar systems and their interdisciplinary applications. It also focuses on the recent trends to use soft computing as a versatile tool for designing a host of decision support systems.
This book highlights the latest findings on nonlinear dynamical systems including two types of attractors: self-excited and hidden attractors. Further, it presents both theoretical and practical approaches to investigating nonlinear dynamical systems with self-excited and hidden attractors. The book includes 20 chapters contributed by respected experts, which focus on various applications such as biological systems, memristor-based systems, fractional-order systems, finance systems, business cycles, oscillators, coupled systems, hyperchaotic systems, flexible robot manipulators, electronic circuits, and control models. Special attention is given to modeling, design, circuit realization, and practical applications to address recent research problems in nonlinear dynamical systems. The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems.
This volume gathers the peer reviewed papers presented at the 4th edition of the International Workshop "Service Orientation in Holonic and Multi-agent Manufacturing - SOHOMA'14" organized and hosted on November 5-6, 2014 by the University of Lorraine, France in collaboration with the CIMR Research Centre of the University Politehnica of Bucharest and the TEMPO Laboratory of the University of Valenciennes and Hainaut-Cambresis. The book is structured in six parts, each one covering a specific research line which represents a trend in future manufacturing: (1) Holonic and Agent-based Industrial Automation Systems; (2) Service-oriented Management and Control of Manufacturing Systems; (3) Distributed Modelling for Safety and Security in Industrial Systems; (4) Complexity, Big Data and Virtualization in Computing-oriented Manufacturing; (5) Adaptive, Bio-inspired and Self-organizing Multi-Agent Systems for Manufacturing and (6) Physical Internet Simulation, Modelling and Control. There is a clear orientation of the SOHOMA'14 workshop towards complexity, which is a common view of all six parts. There is need for a framework allowing the development of manufacturing cyber physical systems including capabilities for complex event processing and data analytics which are expected to move the manufacturing domain closer towards cloud manufacturing within contextual enterprises. Recent advances in sensor, communication and intelligent computing technologies made possible the Internet connectivity of the physical world: the Physical Internet, where not only documents and images are created, shared, or modified in the cyberspace, but also the physical resources and products interact over Internet and make decisions based on shared communication.
This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis.
This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.
Teaching and learning paradigms have attracted increased attention especially in the last decade. Immense developments of different ICT technologies and services have paved the way for alternative but effective approaches in educational processes. Many concepts of the agent technology, such as intelligence, autonomy and cooperation, have had a direct positive impact on many of the requests imposed on modern e-learning systems and educational processes. This book presents the state-of-the-art of e-learning and tutoring systems and discusses their capabilities and benefits that stem from integrating software agents. We hope that the presented work will be of a great use to our colleagues and researchers interested in the e-learning and agent technology. "
Computational intelligence encompasses a wide variety of techniques that allow computation to learn, to adapt, and to seek. That is, they may be designed to learn information without explicit programming regarding the nature of the content to be retained, they may be imbued with the functionality to adapt to maintain their course within a complex and unpredictably changing environment, and they may help us seek out truths about our own dynamics and lives through their inclusion in complex system modeling. These capabilities place our ability to compute in a category apart from our ability to erect suspension bridges, although both are products of technological advancement and reflect an increased understanding of our world. In this book, we show how to unify aspects of learning and adaptation within the computational intelligence framework. While a number of algorithms exist that fall under the umbrella of computational intelligence, with new ones added every year, all of them focus on the capabilities of learning, adapting, and helping us seek. So, the term unified computational intelligence relates not to the individual algorithms but to the underlying goals driving them. This book focuses on the computational intelligence areas of neural networks and dynamic programming, showing how to unify aspects of these areas to create new, more powerful, computational intelligence architectures to apply to new problem domains.
The book is focused on various applications of artificial intelligence (AI) in additive manufacturing such as aerospace and defense, automotive, consumer products, industrial products, medical devices and more. The book not only highlights the latest research status in the domain but also identi?es future scope of work for the field of manufacturing. It provides a provides a deep and state-of-the-art technological-scientific approach and offers a comprehensive guide on AI in additive manufacturing. It presents a necessary discussion on the successes and challenges within the excitement of building a future with AI technology and serves as a guide for how the technology impacts industries, how the technology has matured and been implemented, and the long-term competitive advantages. This book will present case studies, literature reviews, recent examples and technical developments to illustrate existing technologies and prospects for the future. There is no doubt that AI in additive manufacturing has gained interest and the research in the area will continue to develop, with this book itself adding to the commentary.
Using an interdisciplinary approach, this book explores the emerging topics and rapid technological developments of robotics and artificial intelligence through the lens of the evolving role of sex robots, and how they should best be designed to serve human needs. An international panel of authors provides the most up-to-date, evidence-based empirical research on the potential sexual applications of artificial intelligence. Early chapters discuss the objections to sexual activity with robots while also providing a counterargument to each objection. Subsequent chapters present the implications of robot sex as well as the security and data privacy issues associated with sexual interactions with artificial intelligence. The book concludes with a chapter highlighting the importance of a scientific, multidisciplinary approach to the study of human - robot sexuality. Topics featured in this book include: The Sexual Interaction Illusion Model. The personal companion system, Harmony, designed by Realbotix (TM). An exposition of the challenges of personal data control and protection when dealing with artificial intelligence. The current and future technological possibilities of projecting three-dimensional holograms. Expert discussion notes from an international workshop on the topic. AI Love You will be of interest to academic researchers in psychology, robotics, ethics, medical science, sociology, gender studies as well as clinicians, policy makers, and the business sector.
Many problems in decision making, monitoring, fault detection, and control require the knowledge of state variables and time-varying parameters that are not directly measured by sensors. In such situations, observers, or estimators, can be employed that use the measured input and output signals along with a dynamic model of the system in order to estimate the unknown states or parameters. An essential requirement in designing an observer is to guarantee the convergence of the estimates to the true values or at least to a small neighborhood around the true values. However, for nonlinear, large-scale, or time-varying systems, the design and tuning of an observer is generally complicated and involves large computational costs. This book provides a range of methods and tools to design observers for nonlinear systems represented by a special type of a dynamic nonlinear model -- the Takagi--Sugeno (TS) fuzzy model. The TS model is a convex combination of affine linear models, which facilitates its stability analysis and observer design by using effective algorithms based on Lyapunov functions and linear matrix inequalities. Takagi--Sugeno models are known to be universal approximators and, in addition, a broad class of nonlinear systems can be exactly represented as a TS system. Three particular structures of large-scale TS models are considered: cascaded systems, distributed systems, and systems affected by unknown disturbances. The reader will find in-depth theoretic analysis accompanied by illustrative examples and simulations of real-world systems. Stability analysis of TS fuzzy systems is addressed in detail. The intended audience are graduate students and researchers both from academia and industry. For newcomers to the field, the book provides a concise introduction dynamic TS fuzzy models along with two methods to construct TS models for a given nonlinear system
To my wife, Mitu - Vivek Bannore Preface Preface In many imaging systems, under-sampling and aliasing occurs frequently leading to degradation of image quality. Due to the limited number of sensors available on the digital cameras, the quality of images captured is also limited. Factors such as optical or atmospheric blur and sensor noise can also contribute further to the d- radation of image quality. Super-Resolution is an image reconstruction technique that enhances a sequence of low-resolution images or video frames by increasing the spatial resolution of the images. Each of these low-resolution images contain only incomplete scene information and are geometrically warped, aliased, and - der-sampled. Super-resolution technique intelligently fuses the incomplete scene information from several consecutive low-resolution frames to reconstruct a hi- resolution representation of the original scene. In the last decade, with the advent of new technologies in both civil and mi- tary domain, more computer vision applications are being developed with a demand for high-quality high-resolution images. In fact, the demand for high- resolution images is exponentially increasing and the camera manufacturing te- nology is unable to cope up due to cost efficiency and other practical reasons.
The best source for cutting-edge insights into AI in healthcare operations AI in Healthcare: How Artificial Intelligence Is Changing IT Operations and Infrastructure Services collects, organizes and provides the latest, most up-to-date research on the emerging technology of artificial intelligence as it is applied to healthcare operations. Written by a world-leading technology executive specializing in healthcare IT, this book provides concrete examples and practical advice on how to deploy artificial intelligence solutions in your healthcare environment. AI in Healthcare reveals to readers how they can take advantage of connecting real-time event correlation and response automation to minimize IT disruptions in critical healthcare IT functions. This book provides in-depth coverage of all the most important and central topics in the healthcare applications of artificial intelligence, including: Healthcare IT AI Clinical Operations AI Operational Infrastructure Project Planning Metrics, Reporting, and Service Performance AIOps in Automation AIOps Cloud Operations Future of AI Written in an accessible and straightforward style, this book will be invaluable to IT managers, administrators, and engineers in healthcare settings, as well as anyone with an interest or stake in healthcare technology.
This book is a collection of extended chapters from the selected papers that were published in the proceedings of Science and Information (SAI) Conference 2015. It contains twenty-one chapters in the field of Computational Intelligence, which received highly recommended feedback during SAI Conference 2015 review process. During the three-day event 260 scientists, technology developers, young researcher including PhD students, and industrial practitioners from 56 countries have engaged intensively in presentations, demonstrations, open panel sessions and informal discussions.
How can we advance knowledge? Which methods do we need in order to make new discoveries? How can we rationally evaluate, reconstruct and offer discoveries as a means of improving the 'method' of discovery itself? And how can we use findings about scientific discovery to boost funding policies, thus fostering a deeper impact of scientific discovery itself? The respective chapters in this book provide readers with answers to these questions. They focus on a set of issues that are essential to the development of types of reasoning for advancing knowledge, such as models for both revolutionary findings and paradigm shifts; ways of rationally addressing scientific disagreement, e.g. when a revolutionary discovery sparks considerable disagreement inside the scientific community; frameworks for both discovery and inference methods; and heuristics for economics and the social sciences.
Intelligent systems are required to facilitate the use of information provided by the internet and other computer based technologies. This book describes the state-of-the-art in Intelligent Automation and Systems Engineering. Topics covered include Intelligent decision making, Automation, Robotics, Expert systems, Fuzzy systems, Knowledge-based systems, Knowledge extraction, Large database management, Data analysis tools, Computational biology, Optimization algorithms, Experimental designs, Complex system identification, Computational modeling, Systems simulation, Decision modeling, and industrial applications.
In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. The RL framework has gained popularity with the development of algorithms capable of mastering increasingly complex problems, but learning difficult tasks is often slow or infeasible when RL agents begin with no prior knowledge. The key insight behind "transfer learning" is that generalization may occur not only within tasks, but also across tasks. While transfer has been studied in the psychological literature for many years, the RL community has only recently begun to investigate the benefits of transferring knowledge. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research. The key contributions of this book are:
By way of the research presented in this book, the author has established himself as the pre-eminent worldwide expert on transfer learning in sequential decision making tasks. A particular strength of the research is its very thorough and methodical empirical evaluation, which Matthew presents, motivates, and analyzes clearly in prose throughout the book. Whether this is your initial introduction to the concept of transfer learning, or whether you are a practitioner in the field looking for nuanced details, I trust that you will find this book to be an enjoyable and enlightening read. Peter Stone, Associate Professor of Computer Science
This book is a delight for academics, researchers and professionals working in evolutionary and swarm computing, computational intelligence, machine learning and engineering design, as well as search and optimization in general. It provides an introduction to the design and development of a number of popular and recent swarm and evolutionary algorithms with a focus on their applications in engineering problems in diverse domains. The topics discussed include particle swarm optimization, the artificial bee colony algorithm, Spider Monkey optimization algorithm, genetic algorithms, constrained multi-objective evolutionary algorithms, genetic programming, and evolutionary fuzzy systems. A friendly and informative treatment of the topics makes this book an ideal reference for beginners and those with experience alike.
This quite simply superb book focuses on various techniques of computational intelligence, both single ones and those which form hybrid methods. These techniques are today commonly applied to issues of artificial intelligence. The book presents methods of knowledge representation using different techniques, namely the rough sets, type-1 fuzzy sets and type-2 fuzzy sets. Next up, various neural network architectures are presented and their learning algorithms are derived. Then, the family of evolutionary algorithms is discussed, including connections between these techniques and neural networks and fuzzy systems. Finally, various methods of data partitioning and algorithms of automatic data clustering are given and new neuro-fuzzy architectures are studied and compared.
This book describes models of the neuron and multilayer neural structures, with a particular focus on mathematical models. It also discusses electronic circuits used as models of the neuron and the synapse, and analyses the relations between the circuits and mathematical models in detail. The first part describes the biological foundations and provides a comprehensive overview of the artificial neural networks. The second part then presents mathematical foundations, reviewing elementary topics, as well as lesser-known problems such as topological conjugacy of dynamical systems and the shadowing property. The final two parts describe the models of the neuron, and the mathematical analysis of the properties of artificial multilayer neural networks. Combining biological, mathematical and electronic approaches, this multidisciplinary book it useful for the mathematicians interested in artificial neural networks and models of the neuron, for computer scientists interested in formal foundations of artificial neural networks, and for the biologists interested in mathematical and electronic models of neural structures and processes. |
You may like...
Advanced Introduction to Law and…
Woodrow Barfield, Ugo Pagallo
Paperback
R678
Discovery Miles 6 780
Advanced Introduction to Artificial…
Tom Davenport, John Glaser, …
Paperback
R617
Discovery Miles 6 170
|