Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Over time, it has become clear that changes in stem cells do occur during aging, not only in their number but also in their relationship to their microenvironment and their functionality as reflected in changes to their metabolome. Stem Cells and Aging: Methods and Protocols brings together chapters from expert contributors with protocols critical for exploring the biology of stem cell aging, all of which is key for understanding these age-related stem cell changes at a basic biology level and at the level of their impacts for regenerative medicine. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy to use, Stem Cells and Aging: Methods and Protocols serves as an ideal reference to guide investigators toward further valuable answers to the problems of our aging population.
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer's disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology - Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in fruit crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing in many of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The seven chapters each dedicated to a fruit crop and a fruit crop group in this volume elucidate different types of abiotic stresses and their effects on and interaction with the crops; enumerate the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
This book covers the important diseases and pests of potato which are of global significance. The pests and diseases in potato lead to huge economic losses by reducing the yield and quality of the produce. This book describes major pests and diseases in detail with particular emphasis on the latest developments with respect to their biology, ecology, and management. It highlights the importance of virus infection for seed potato production and diagnostic symptoms, along with management guidelines. The book brings forth tips for judicious use of pesticides for sustainable potato production and management of pesticide resistance. Use of novel approaches such as RNA interference, genome editing, and other genomic resources for drug designing in diseases and pest management is also emphasized in the book. This book is of interest to teachers, researchers, extension workers, potato growers, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture and plant pathology. National and international agricultural scientists and policy makers will also find this to be a useful read.
In Quantitative Trait Loci: Methods and Protocols, a panel of highly experienced statistical geneticists demonstrate in a step-by-step fashion how to successfully analyze quantitative trait data using a variety of methods and software for the detection and fine mapping of quantitative trait loci (QTL). Writing for the nonmathematician, these experts guide the investigator from the design stage of a project onwards, providing detailed explanations of how best to proceed with each specific analysis, to find and use appropriate software, and to interpret results. Worked examples, citations to key papers, and variations in method ease the way to understanding and successful studies. Among the cutting-edge techniques presented are QTDT methods, variance components methods, and the Markov Chain Monte Carlo method for joint linkage and segregation analysis.
Cyanobacteria are a fascinating and versatile group of bacteria of immense biological importance. Thought to be amongst the first organisms to colonize the earth, these bacteria are the photosynthetic ancestors of chloroplasts in eukaryotes, such as plants and algae. In addition, they can fix nitrogen, survive in very hostile environments (e.g. down to -60-degreesC), are symbiotic, have circadian rhythms, exhibit gliding mobility, and can differentiate into specialized cell types called heterocysts. This makes them ideal model systems for studying fundamental processes, such as nitrogen fixation and photosynthesis. In addition, cyanobacteria produce an array of bioactive compounds, some of which could become novel anti-microbial agents, anti-cancer drugs, UV protectants, etc. The amazing versatility of cyanobacteria has attracted huge scientific interest in recent years. Given that 24 genomes sequences have been completed and many more projects are currently underway, the point has been reached where there is an urgent need to summarize and review the current molecular biology, genomics, and evolution of these important organisms. This volume brings together the expertise and enthusiasm of an international panel of leading cyanobacterial researchers to provide a state-of-the art overview of the field. Topics covered include: evolution, comparative genomics, gene transfer, molecular ecology and environmental genomics, stress responses, bioactive compounds, circadian clock, structure of the photosynthetic apparatus, membrane systems, carbon acquisition, nitrogen assimilation, C/N balance sensing, and much more. This book will be essential for anyone with an interest in cyanobacteria, bacterial photosynthesis, bacterial nitrogen fixation, and symbiosis.
In the past century, nearly all of the biological sciences have been directly affected by discoveries and developments in genetics, a fast-evolving subject with important theoretical dimensions. In this rich and accessible book, Paul Griffiths and Karola Stotz show how the concept of the gene has evolved and diversified across the many fields that make up modern biology. By examining the molecular biology of the 'environment', they situate genetics in the developmental biology of whole organisms, and reveal how the molecular biosciences have undermined the nature/nurture distinction. Their discussion gives full weight to the revolutionary impacts of molecular biology, while rejecting 'genocentrism' and 'reductionism', and brings the topic right up to date with the philosophical implications of the most recent developments in genetics. Their book will be invaluable for those studying the philosophy of biology, genetics and other life sciences.
Originally published in 1957, The Uniqueness of the Individual is a collection of 9 essays published from the ten years preceding publication. The essays deal with some of the central problems of biology. These are among the questions put and answered from the standpoint of modern experimental biology. What is ageing and how is it measured? What theories have been held to account for it, and with what success? Did ageing evolve, and if so how? Is Lamarckism and adequate explanation of evolutionary process? Does evolution sometimes go wrong? Do human beings evolve in a way peculiar to themselves? Other essays touch upon the problems of scientific method and of growth and transformation. This book will be of interest to natural historians, evolutionists and anthropologists.
Cellular-molecular approach to evolution has led to radical changes in our understanding of biologic principles ranging from the Cell, to the Life Cycle, Development, Homeostasis, Senescence/Aging, Heterochrony, Pleiotropy, Phenotype, and perhaps the purpose of life itself. Much of this new way of thinking about biology and medicine emanates from experimental evidence for epigenetic inheritance. This leads one to question whether our unicellular state is the actual primary level of selection. One particular system that is now recognized as being under the auspices of epigenetic inheritance is the endocrine system, which is conventionally thought to regulate physiologic homeostasis. However, because the sex hormones play such a major role in behaviors related to the acquisition of epigenetic data, and the processing of such epigenetic data by the gonads during meiosis, their role in the evolution of the organism become tractable. The composite of the activities of the individual over the course of its lifetime can now be understood causally, resulting from the orchestration of its physiology by hormones, prenatally, postnatally and during the aging process, across the entire life span of the organism. Specific behaviors over the course of the life cycle during childhood, adolescence, puberty, adulthood and aging can now be understood mechanistically rather than merely as milestones in the various stages of life. With the above considerations in mind, this book presents the cellular-evolutionary perspective towards the relationship of the organism with its surroundings, human and non-human alike renders biology and medicine a continuum instead of fragmented, un-related anecdotes.
Every cell has developed mechanisms to respond to changes in its environment and to adapt its growth and metabolism to unfavorable conditions. The unicellular eukaryote yeast has long proven as a particularly useful model system for the analysis of cellular stress responses, and the completion of the yeast genome sequence has only added to its powerThis volume comprehensively reviews both the basic features of the yeast genral stress response and the specific adapations to different stress types (nutrient depletion, osmotic and heat shock as well as salt and oxidative stress). It includes the latest findings in the field and discusses the implications for the analysis of stress response mechanisms in higher eukaryotes as well.
Researched and written by a group of highly respected professionals in the fields of biochemistry, microbiology, and molecular genetics, this resource offers a comprehensive treatment on the role of metal ions in regulating genes. In addition to looking at the toxicity effects of metal, this text explores the role of metal ions in normal metabolisms, examining both prokaryotes and eukaryotes. Metal Ions in Gene Regulation should prove an essential reference for all microbiologists, biochemists, bioinorganic chemists, and molecular biologists, especially those interested in gene regulation.
Mesenchymal stem cells (MSCs), a type of adult stem cells, have attracted the attention of scientists and physicians alike due to their unique biological properties and potential for disease treatment. As stem cell research is complex and progressing rapidly, it is important that the experts in this field share their views and perspectives. This book, co-edited by leading global researchers, is divided into three major sections and covers a broad range of topics concerning MSCs during their transition from benchside to bedside. The book is intended for researchers and clinicians in the field of stem cells. Dr. Robert Chunhua Zhao, MD. Ph.D is Cheung Kong Professor of Stem Cell Biology, Professor of Cell Biology at the Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, China Director of Center for Tissue Engineering, PUMC Chief scientist of 973 program Regional Editor of Stem Cells and Development.
Epigenetic modifications comprise heritable gene expression changes that occur without alteration of the DNA sequence and 'co-act' with genetic factors to shape development processes and evolutionary trajectories. Multicellular organisms receive different types of environmental stimuli/stresses that trigger epigenetic modifications during development. These environmentally driven mechanisms represent an underlying cause of phenotypic diversity, especially in metazoans. This book aims to present some of the latest epigenetic insights into the development of metazoans (including humans) as an intersection between their ecology and evolution.
The series of Conferences on the Spectroscopy of Biological Molecules aims to stimulate research and development in this area of Science. The relationship between the structure and the biological activity of such materials as proteins, lipids, and nucleic acids is fundamental. The 5th European Conference on the Spectroscopy of Biological Molecules (ECSBM) is held at the Hotel Poseidon Club, Loutraki, Greece, on 5-10 September 1993. The scientific contents are remained the same as in the past conferences. Emphasis is given to vibrational spectroscopy, mainly infrared and Raman applied to the study of structure and dynamics of proteins, nucleic acids, porphyrins, carbohydrates, membranes, etc. Most of the contributions describe molecular dynamics and excitation processes, in particular the electronic-vibrational excitations, which are studied by Fr-Raman, Fourier Transform Infrared (Fr-IR) coupled often with microscopy and chromatography. Contributions also include Fr-Raman and FT-IR instrumentation and new developments in this area, and applications in Biology and Medicine. Furthermore, there is a plenary lecture in Mass Spectrometry and its applications in biomedical analysis, and a session devoted to Nuclear Magnetic Resonance (NMR) and its application in the study of biological molecules. Several contributions are devoted to other methods, such as CD, optical absorption, fluorescence and molecular graphics simulations. This volume of ECSBM contains shon articles by the invited and contributed lectures as well as from the Poster presentations from many European and non-European countries.
In the recent years, a significant amount of research has emerged connecting the link between alcohol and cancer. The field has rapidly advanced, especially since the complex connection between alcohol and cancer has several unique sub areas that are being investigated. This proceedings volume will contain chapters based upon the presentation of the 2nd International Conference on Alcohol and Cancer in Colorado, 2013. The various topics explore the affects of alcohol on: liver and breast cancer; cell signaling and cancer; stem cells; biomarkers and metabolomics; aerodigestive cancers; cancer and the immune system and more.
Mapping of animal genomes has generated huge databases and several new concepts and strategies, which are useful to elucidate origin, evolution and phylogeny. Genetic and physical maps of genomes further provide precise details on chromosomal location, function, expression and regulation of academically and economically important genes. The series Genome Mapping and Genomics in Animals provides comprehensive and up-to-date reviews on genomic research on a large variety of selected animal systems, contributed by leading scientists from around the world. Laboratory animals are those species that by accident of evolution, domestication and selective breeding are amenable to maintenance and study in a laboratory environment. Many of these species are studied as 'models' for the biology and pathology of humans. Laboratory animals included in this volume are sea-urchin, nematode worm, fruit fly, sea squirts, puffer fishes, medaka fish, African clawed frog, mouse and rat.
This volume provides methods used to investigate histone methyltransferase function. Chapters guide readers through a comprehensive set of approaches that detail phylogenetic diversity, histone demethylase activities in vitro, generating chromatin substrates, auto-methylation, quantification of metabolites, protein purification, crystallization, X-ray structure, cryogenic electron microscopy, assessing genome-wide patterns, CUT&Tag in mouse embryonic tissues, chemical biology approaches, peptide SPOT arrays, nascent chromatin capture, ectopic protein tethering, computational models, and development of methyltransferase inhibitors. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Histone Methyltransferases: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann’s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.
Encyclopedia of Cancer, Third Edition, Three Volume Set provides a comprehensive, up-to-date overview of the multiple facets of the disease, including research, treatment and societal impact. This new edition comprises 180 contributions from renown experts who present the latest in Mechanisms, Hallmarks of Cancer, Causes of Cancer, Prevention and Control, Diagnosis and Therapy, Pathology and the Genetics of specific Cancers. Readers will find a comprehensive overview of the main areas of oncology, including etiology, mechanisms, prevention, and treatments, from basic science to clinical applications and public health, all set alongside the latest advances and hot topics that have emerged since the previous edition. Topics of interest in the field, including genomics and epigenomics, our understanding of the causes of cancer and the approaches to preventing it (e.g., HPV vaccination, role of obesity and nutrition, molecular markers of environmental exposures), new screening techniques (e.g., low-dose CT for lung cancer) and improvements in the treatment of many cancers (e.g., breast cancer, lung adenocarcinoma) are comprehensively and authoritatively presented.
This second edition provides an overview of recent developments and approaches used by researchers to investigate the properties and functions of mammary epithelial and stem cells, which will contribute to understand the heterogeneity of the mammary gland and of breast cancer. Chapters detail processes used to characterize stem cells, single cell RNA sequencing, computational methods, sophisticated imaging techniques, and a variety of model systems, among others. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mammary Stem Cells: Methods and Protocols, Second Edition aims to make available protocols used to navigate the intricate behavior of mammary stem cells and to gain further knowledge to take us closer to the design of innovative strategies to prevent and treat breast cancer.
This new edition offers a state-of-the-art and integrative vision of pharmacogenomics by exploring new concepts and practical methodologies focusing on disease treatments, from cancers to cardiovascular and neurodegenerative disorders and more. The collection of these theoretical and experimental approaches facilitates problem-solving by tackling the complexity of personalized drug discovery and development. Written by leading experts in their fields for the highly successful Methods in Molecular Biology series, the book aims to provide across-the-board resources to support the translation of pharmacogenomics into better individualized health care. Authoritative and up-to-date, Pharmacogenomics in Drug Discovery and Development, Third Edition aims to aid researchers in approaching the challenges in pharmacogenomics and personalized medicine with the introduction of these novel ideas and cutting-edge methodologies.
In Cereal Genomics: Methods and Protocols, expert researchers provides modern protocols for the analysis and manipulation of cereal genomes. Techniques for isolation and analysis of DNA and RNA from both the vegetative tissues and from the more challenging seeds of cereals are described. Tools for the isolation, characterization and functional analysis of cereal genes and their transcripts are detailed. Methods for molecular screening of cereals and for their genetic transformation are also covered. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cereal Genomics: Methods and Protocols provides a comprehensive resource for those studying cereal genomes.
Though the Genome Project will eventually result in the sequencing of the human genome, as well as the genomes of several other organisms, there will still be a need for good statistics for family studies of complex diseases. The papers in this volume are contributions by some of the leading researchers in the field to the current topics in statistical genetics. One section deals with DNA sequence matching and issues related to forensics, while another deals with statistical problems of modeling phylogenies and inferential difficulties related to the complex tree structures produced, as well as the method of coalescence.
Fungi belonging to the genera "Trichoderma" and "Gliocladium" are soil-bourne saprophytes which have been used for industrial and agricultural applications for decades. Some strains produce enzymes and antibiotics while others are useful as biological agents for the protections of plants against pathogens. This first volume of two, gives a detailed account of the morphology and taxonomy of "Trichoderma" and "Gliocladium", before disscusing their ecology and basic biology. Molecular biological aspects examined include their genome and gene structure, genetic transformation and asexual genetics. A chapter on safety aspects is also included. |
You may like...
Religion and Human Enhancement - Death…
Tracy J. Trothen, Calvin Mercer
Hardcover
R5,008
Discovery Miles 50 080
Introduction to Genetic Analysis Achieve…
Anthony J.F. Grifiths, John Doebley, …
Mixed media product
R2,368
Discovery Miles 23 680
Transgenic Crops - Emerging Trends and…
Muhammad Sarwar Khan, Kauser Abdulla Malik
Hardcover
O-GlcNAcylation and Cancer
Ikram El Yazidi-Belkoura, Tony Lefebvre
Hardcover
R923
Discovery Miles 9 230
|