![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Researched and written by a group of highly respected professionals in the fields of biochemistry, microbiology, and molecular genetics, this resource offers a comprehensive treatment on the role of metal ions in regulating genes. In addition to looking at the toxicity effects of metal, this text explores the role of metal ions in normal metabolisms, examining both prokaryotes and eukaryotes. Metal Ions in Gene Regulation should prove an essential reference for all microbiologists, biochemists, bioinorganic chemists, and molecular biologists, especially those interested in gene regulation.
This volume provides a collection of protocols from researchers in the statistical genomics field. Chapters focus on integrating genomics with other “omics” data, such as transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Statistical Genomics hopes that by covering these diverse and timely topics researchers are provided insights into future directions and priorities of pan-omics and the precision medicine era.
Over time, it has become clear that changes in stem cells do occur during aging, not only in their number but also in their relationship to their microenvironment and their functionality as reflected in changes to their metabolome. Stem Cells and Aging: Methods and Protocols brings together chapters from expert contributors with protocols critical for exploring the biology of stem cell aging, all of which is key for understanding these age-related stem cell changes at a basic biology level and at the level of their impacts for regenerative medicine. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy to use, Stem Cells and Aging: Methods and Protocols serves as an ideal reference to guide investigators toward further valuable answers to the problems of our aging population.
Every cell has developed mechanisms to respond to changes in its environment and to adapt its growth and metabolism to unfavorable conditions. The unicellular eukaryote yeast has long proven as a particularly useful model system for the analysis of cellular stress responses, and the completion of the yeast genome sequence has only added to its powerThis volume comprehensively reviews both the basic features of the yeast genral stress response and the specific adapations to different stress types (nutrient depletion, osmotic and heat shock as well as salt and oxidative stress). It includes the latest findings in the field and discusses the implications for the analysis of stress response mechanisms in higher eukaryotes as well.
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer's disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology - Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
In the recent years, a significant amount of research has emerged connecting the link between alcohol and cancer. The field has rapidly advanced, especially since the complex connection between alcohol and cancer has several unique sub areas that are being investigated. This proceedings volume will contain chapters based upon the presentation of the 2nd International Conference on Alcohol and Cancer in Colorado, 2013. The various topics explore the affects of alcohol on: liver and breast cancer; cell signaling and cancer; stem cells; biomarkers and metabolomics; aerodigestive cancers; cancer and the immune system and more.
Though the Genome Project will eventually result in the sequencing of the human genome, as well as the genomes of several other organisms, there will still be a need for good statistics for family studies of complex diseases. The papers in this volume are contributions by some of the leading researchers in the field to the current topics in statistical genetics. One section deals with DNA sequence matching and issues related to forensics, while another deals with statistical problems of modeling phylogenies and inferential difficulties related to the complex tree structures produced, as well as the method of coalescence.
Fungi belonging to the genera "Trichoderma" and "Gliocladium" are soil-bourne saprophytes which have been used for industrial and agricultural applications for decades. Some strains produce enzymes and antibiotics while others are useful as biological agents for the protections of plants against pathogens. This first volume of two, gives a detailed account of the morphology and taxonomy of "Trichoderma" and "Gliocladium", before disscusing their ecology and basic biology. Molecular biological aspects examined include their genome and gene structure, genetic transformation and asexual genetics. A chapter on safety aspects is also included.
This volume provides up-to-date and novel techniques for various screening technologies currently used in metagenomics and related areas. Starting with DNA/RNA isolation from environmental samples, the book continues by delving into areas such as current methods used to isolate DNA and construct metagenomic libraries, establishment of metagenome libraries in non-E. coli hosts, and topics like function-driven mining of metagenomic DNA, screening and analyzing protocols for a wide array of different genes encoding enzymes, bacterial viruses and much more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Metagenomics: Methods and Protocols, Third Edition provides a comprehensive collection of up-to-date metagenome protocols and tools for the recovery of many major types of biocatalysts and allows for the easy setup of these screens in microbiology laboratories.
Genomics, the mapping of the entire genetic complement of an organism, is the new frontier in biology. This handbook on the statistical issues of genomics covers current methods and the tried-and-true classical approaches.
- The book discusses the recent techniques in NGS data analysis which is the most needed material by biologists (students and researchers) in the wake of numerous genomic projects and the trend toward genomic research. - The book includes both theory and practice for the NGS data analysis. So, readers will understand the concept and learn how to do the analysis using the most recent programs. - The steps of application workflows are written in a manner that can be followed for related projects. - Each chapter includes worked examples with real data available on the NCBI databases. Programming codes and outputs are accompanied with explanation. - The book content is suitable as teaching material for biology and bioinformatics students. Meets the requirements of a complete semester course on Sequencing Data Analysis Covers the latest applications for Next Generation Sequencing Covers data reprocessing, genome assembly, variant discovery, gene profiling, epigenetics, and metagenomics
The book discusses the importance of eggplant (Solanum melongena L.) as a crop, highlighting the potential for eggplant to serve as a model for understanding several evolutionary and taxonomic questions. It also explores the genomic make-up, in particular in comparison to other Solanaceous crops, and examines the parallels between eggplant and tomato domestication as well as between the most common eggplant species and two related eggplants native to Africa (Ethiopian eggplant [Solanum aethiopicum L.] and African eggplant [Solanum macrocarpon L.]). The eggplant genome was first sequenced in 2014, and an improved version was due to be released in 2017. Further investigations have revealed the relationships between wild species, domesticated eggplant, and feral weedy eggplant (derived from the domesticate), as well as targets of selection during domestication. Parallels between eggplant and tomato domestication loci are well known and the molecular basis is currently being investigated. Eggplant is a source of nutrition for millions of people worldwide, especially in Southeast Asia where it is a staple food source. Domesticated in the old world, in contrast to its congeners tomato and potato, the eggplant is morphologically and nutritionally diverse. The spread of wild eggplants from Africa is particularly interesting from a cultural point of view. This book brings together diverse fields of research, from bioinformatics to taxonomy to nutrition to allow readers to fully understand eggplant's importance and potential.
Due to the vital biological importance of RNA and proteins functioning together within a cell, a protocol volume describing experimental procedures to study their interactions should find a home in many laboratories. RNA-Protein Interaction Protocols, Second Edition updates, complements, and expands upon the popular first edition by providing a collection of cutting-edge techniques developed or refined in the past few years along with tried-and-true methods. The expert contributors explore the isolation and characterization of RNA-protein complexes, the analysis and measurement of RNA-protein interaction, and related novel techniques and strategies. Written in the highly successful Methods in Molecular Biologya"[ series format, the chapters include brief introductions to the material, lists of necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and a Notes section which highlights tips on troubleshooting and avoiding known pitfalls. Comprehensive and up-to-date, RNA-Protein Interaction Protocols, Second Edition is an ideal guide for researchers continuing the study of this all-important biological partnership.
The analysis of changes in gene activity in tissues and cells of plants is an important way of measuring developmental and environmental responses. This is achieved by identifying, isolating, and analyzing the genes responsible for these changes, and assessing their degree of genetic expression in relation to other cells and tissues within each plant. This book, designed as a manual, provides detailed accounts of new and established techniques used to carry out these analyses, as well as a section on trouble-shooting.
This updated volume reflects new and evolved techniques to study detection, profiling, and manipulation of microRNAs (miRNAs) in plants and animals. After overviews of how best to detect, identify, and validate microRNAs, the book continues by exploring state-of-the-art protocols for microRNA detection, approaches to profile the expression level of microRNAs, spatial expression analysis, describe in silico analysis of microRNAs and their targets, as well as protocols for functional analysis of microRNAs and their targets by CRISPR/Cas. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, MicroRNA Detection and Target Identification: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in technical crops is imperative for addressing FHEE (food, health, energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The 15 chapters dedicated to 13 technical crops and 2 technical crop groups in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.
The field of epigenetics has played a major role at the forefront not only of molecular biology, but also of medical genetics and clinical medicine. Few disciplines have experienced growth comparable to that which we have witnessed for epigenetics in the past decade. The goal of "Epigenetics Protocols, Second Edition "is to highlight select techniques that have been mainstays in the field as well as to cover methods that are especially relevant to extant discoveries in epigenetics. This volume focuses on the two broad areas of epigenetics: DNA methylation and chromatin modifications, and also covers the complex topic of computational methods for epigenetic analyses which is essential to a complete understanding of the vast body of information that is being derived with the use of these newly-developed tools. Written in the highly successful "Methods in Molecular Biology " series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, "Epigenetics Protocols, Second Edition" serves as an ideal guide to advanced students, basic scientists and clinical researchers as well as clinicians and biotechnology investigators who wish to continue exploring this exciting and progressive research field."
This book brings together contributions from internationally renowned experts in the biochip field. These chapters present not only the authors' latest research work, but also discuss current trends in biochip technology. Specific topics include microarray technology and its applications, microfluidics, drug discovery, detection technology, lab-on-chip technology and bioinformatics. Both newcomers to the field and experienced biochip researchers will benefit from this book.
Are humans unique? This simple question, at the very heart of the hybrid field of biological anthropology, poses one of the false of dichotomies--with a stereotypical humanist answering in the affirmative and a stereotypical scientist answering in the negative. The "study "of human biology is different from the study of the biology of other species. In the simplest terms, people's lives and welfare may depend upon it, in a sense that they may not depend on the study of other scientific subjects. Where science is used to validate ideas--four out of five scientists preferring a brand of cigarettes or toothpaste--there is a tendency to accept the judgment as authoritative without asking the kinds of questions we might ask of other citizens' pronouncements. In "Human Biodiversity, "Marks has attempted to distill from a centuries-long debate what has been learned and remains to be learned about the biological differences within and among human groups. His is the first such attempt by an anthropologist in years, for genetics has undermined the fundamental assumptions of racial taxonomy. The history of those assumptions from Linnaeus to the recent past--the history of other, more useful assumptions that derive from Buffon and have reemerged to account for genetic variation--are the poles of Marks's exploration.
Originally published in 1957, The Uniqueness of the Individual is a collection of 9 essays published from the ten years preceding publication. The essays deal with some of the central problems of biology. These are among the questions put and answered from the standpoint of modern experimental biology. What is ageing and how is it measured? What theories have been held to account for it, and with what success? Did ageing evolve, and if so how? Is Lamarckism and adequate explanation of evolutionary process? Does evolution sometimes go wrong? Do human beings evolve in a way peculiar to themselves? Other essays touch upon the problems of scientific method and of growth and transformation. This book will be of interest to natural historians, evolutionists and anthropologists.
This volume explores base editors (BEs), an invaluable CRISPR-based genome editing tool with a wide variety of versatile applications. Beginning with an overview of BEs, their diverse variants, and computational tools, the book continues with experimental applications of BEs for disease modeling in mammalian cells and generating mutagenic mice, therapeutic base editing strategies, which covers delivery methods of BE-encoded DNA plasmids, mRNAs, or ribonucleoproteins through viruses or non-viral lipid nanoparticles, and lastly, the use of BEs in plants and bacteria. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Base Editors: Methods and Protocols serves as an ideal guide for researchers looking to use base editors to continue their studies in an array of fields.
Encyclopedia of Cancer, Third Edition, Three Volume Set provides a comprehensive, up-to-date overview of the multiple facets of the disease, including research, treatment and societal impact. This new edition comprises 180 contributions from renown experts who present the latest in Mechanisms, Hallmarks of Cancer, Causes of Cancer, Prevention and Control, Diagnosis and Therapy, Pathology and the Genetics of specific Cancers. Readers will find a comprehensive overview of the main areas of oncology, including etiology, mechanisms, prevention, and treatments, from basic science to clinical applications and public health, all set alongside the latest advances and hot topics that have emerged since the previous edition. Topics of interest in the field, including genomics and epigenomics, our understanding of the causes of cancer and the approaches to preventing it (e.g., HPV vaccination, role of obesity and nutrition, molecular markers of environmental exposures), new screening techniques (e.g., low-dose CT for lung cancer) and improvements in the treatment of many cancers (e.g., breast cancer, lung adenocarcinoma) are comprehensively and authoritatively presented.
Bacteriophages (viruses that infect bacteria) are fascinating organisms that have played and continue to play a key role in bacterial genetics and molecular biology. Phage can confer key phenotypes on their host for example, converting a non-pathogenic strain into a pathogen and they play a key role in regulating bacterial populations in all sorts of environments. The phage-bacterium relationship varies enormously, from the simple predator-prey model to a complex, almost symbiotic relationship that promotes the survival and evolutionary success of both. While infection of bacteria used in the fermentation industry can be very problematic and result in financial losses, in other scenarios, phage infection of bacteria can be exploited for industrial and/or medical applications. Interest in phage and phage gene products as potential therapeutic agents is increasing rapidly and is likely to have a profound impact on the pharmaceutical industry and biotechnology in general over the comi
This detailed volume explores a variety of cutting-edge techniques used to interrogate spatial genome organization. Beginning with a section covering the vital chromosome conformation capture (3C) technique, this collection continues with chapters on targeted Hi-C approaches, sequencing-based approaches to assess nuclear environment, as well as single-cell technologies to better characterize the heterogeneity and dynamics of nuclear architectures and approaches to visualize them by microscopy. Finally, in order to be able to ask functional questions about the role of spatial chromatin organization in genomic control, the last section provides methods for acute manipulations of chromatin architecture. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Spatial Genome Organization: Methods and Protocols is an ideal resource for researchers searching for the best techniques to address their own specific research questions. |
You may like...
RNA Methodologies - A Laboratory Guide…
Robert E. Farrell Jr
Paperback
R3,455
Discovery Miles 34 550
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,045
Discovery Miles 30 450
Popularizing Science - The Life and Work…
Krishna Dronamraju
Hardcover
R1,131
Discovery Miles 11 310
|