![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Codon-based models of evolution are a relatively new addition to the toolkit of computational biologists, and in recent years remarkable progress has been made in this area. The study of evolution at the codon level captures information contained in both amino acid and synonymous DNA substitutions. By combining these two types of information, codon analyses are more powerful than those of either amino acid or DNA evolution alone. This is a clear benefit for most evolutionary analyses, including phylogenetic reconstruction, detection of selection, ancestral sequence reconstruction, and alignment of coding DNA. Despite the theoretical advantages of codon based models, their relative complexity delayed their widespread use. Only in recent years, when large-scale sequencing projects produced sufficient genomic data and computational power increased, did their usage become more common. In Codon Evolution, leading researchers in the field of molecular evolution provide the latest insights from codon-based analyses of genetic sequences. The first part of the book provides comprehensive coverage of the developments of various types of codon substitution models such as parametric and empirical models used in maximum likelihood as well as Bayesian frameworks. Subsequent chapters examine the use of codon models to infer selection and other applications of codon models to biological systems. The second part of the book focuses on codon usage bias. Both the underlying mechanisms as well as current methods to analyse codon usage bias are presented.
Situated at the intersection of natural science and philosophy, Our Genes explores historical practices, investigates current trends, and imagines future work in genetic research to answer persistent, political questions about human diversity. Readers are guided through fascinating thought experiments, complex measures and metrics, fundamental evolutionary patterns, and in-depth treatment of exciting case studies. The work culminates in a philosophical rationale, based on scientific evidence, for a moderate position about the explanatory power of genes that is often left unarticulated. Simply put, human evolutionary genomics - our genes - can tell us much about who we are as individuals and as collectives. However, while they convey scientific certainty in the popular imagination, genes cannot answer some of our most important questions. Alternating between an up-close and a zoomed-out focus on genes and genomes, individuals and collectives, species and populations, Our Genes argues that the answers we seek point to rich, necessary work ahead.
This volume presents readers with up-to-date protocols, bioinformatics toolkits, and reference material for understanding circRNAs in plants. The chapters in this book summarize the concepts and techniques for prediction/identification, validation, and analysis of plant circRNAs and their regulatory targets. Some of the topics covered are procedures for circRNA identification and characterization; strategies for circRNA generation; next generation sequencing (NGS) technologies and circRNAs' research; and bioinformatics tools and pipelines for the analysis of circRNA-miRNA-mRNA regulatory networks. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Circular RNAs: Methods and Protocols is an important reference for any researcher looking to explore and apply the latest developments made in this field.
In this book we bring together the most up-to-date information on developments, both basic and applied, that already have or are expected to impact the field of ornamental breeding. These include classical and molecular techniques, traditional and high-throughput approaches and future trends. Since not only professional scientists, but also thousands of future scientists/students as well as amateur breeders around the world contribute heavily to the field of ornamental breeding, an introductory section dealing with the basics of molecular and classical genetics and the evolution of floral diversity is included. This should enable the reader to bridge the gap between traditional and molecular genetics. Classical approaches to the creation/selection of genetic variability, including mutation and tissue culture-aided breeding, are presented. Processes affecting ornamental and agronomic traits at the molecular level are delineated, along with an in-depth analysis of developments in the protection of intellectual property rights. The thoughts and strategies of molecular and classical geneticists, which are not always complementary or even compatible, are presented side by side in this book, and will serve to spark the imaginations of breeders as well as students entering the exciting world of state-of-the-art ornamentals.
Using an interdisciplinary approach, the authors provide an adaptionist interpretation of the basic features of recombination, its evolutionary significance as a key process in reproduction and its importance in genetic mapping. The book synthesizes much recent information in the fields of evloutionary genetics of recombination, the analysis of genetic markers and breeding applications. The authors analyse recombination through a consideration of computer models, large Drosophila populations and an empirical approach to current theories. Practically-orientated readers will be interested in the discussion of a wide spectrum of mapping methods and the new algorithms proposed for genetic mapping of quantitative loci.
This volume details different genomic methods and resources to explore cereal genomics. Chapters guide readers through crop genomes, Next Generation Sequencing (NGS) technologies, protocol for CRISPR editing, transgenic wheat, NGS approach, virus induced gene silencing (VIGS), genomic tools, computational prediction of ncRNAs (miRNAs & ceRNAs) in cereal crops, genotyping-by-sequencing (GBS), Bayesian method, single cell sequencing, genome-wide association study (GWAS), QTL interval mapping, whole genome bisulfite sequencing, genome imprinting, and methods for study the receptor-metabolite interaction. Authoritative and cutting-edge, Genomics of Cereal Crops aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This online first book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the second volume of a continuing series.
This second edition explores up-to-date tools in various function-based technologies currently used in metagenomics. The chapters in this book discuss all of the working steps involved in these technologies, such as: DNA isolation from soils and marine samples followed by the construction and screening of libraries for diverse enzymes and biomolecules; current methods used to isolate DNA and construct large- and small-insert libraries from terrestrial and marine habitats; methods for establishing metagenome libraries in none-E.coli hosts; new molecular tools used for function-driven mining of metagenomic DNA; and screening protocols for a wide array of different genes encoding enzymes with relevance to biotechnology and ecology. Metagenomics: Methods and Protocols, Second Edition also provides detailed screening protocols for phosphatases, poly-hydroxyalkanoate, metabolism-related enzymes, stereoselective hydrolases, and microbial signals for the discovery of secondary metabolites. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Metagenomics: Methods and Protocols, Second Edition is a collection of up-to-date metagenome protocols and tools for the recovery of numerous major types of biocatalysts, and allows researchers to easily setup these screens in any microbiology laboratory.
This volume details methods of identifying synthetic lethal, genetic interactions by various approaches in different model systems including human cancer cells. Chapters guide readers through genetic interactions in model organisms, RNA interference, CRISPR/Cas9 based genome editing technologies, drug-gene interactions, mapping chemical genetic interactions, synergistic drug-gene relations, single cell sequencing, gene expression profiling, and novel genetic interactions. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Genetic Interaction Mapping aims to be a useful practical guide to researches to help further their study in this field.
This volume explores a collection of methods that studies genome editing across a variety of bacteria, phages, and plants. Chapters in this book cover topics such as scarless DNA recombineering of phage in the lysogenic state; HEMSE; Dup-In and DIRex; recombineering in Staphylococcus aureus; and genome editing with Cas9 in lactobacilli. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Recombineering: Methods and Protocols is a valuable resource for any researchers interested in learning more about this developing field.
&>ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products. Packages Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase. Used or rental books If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code. Access codes Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase. Informed by many years of genetics teaching and research expertise, authors Mark Sanders and John Bowman use an integrated approach that helps contextualize three core challenges of learning genetics: solving problems, understanding evolution, and understanding the connection between traditional genetics models and more modern approaches. Genetic Analysis: An Integrated Approach, 2/e is extensively updated with relevant, cutting-edge coverage of modern genetics and is supported by MasteringGenetics, the most widely-used homework and assessment program in genetics. Featuring expanded assignment options, MasteringGenetics complements the book's problem-solving approach, engages students, and improves results by helping them master concepts and problem-solving skills.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in oilseed crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to an oilseed crop in this volume elucidate on different types of biotic stress agents and their effects on and interaction with the crop plants; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress resistant varieties; discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality of yields; and also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.
The book focuses on the evolutionary impact of horizontal gene transfer processes on pathogenicity, environmental adaptation and biological speciation. Newly acquired genetic material has been considered as a driving force in evolution for prokaryotic genomes for many years, with recent technical developments advancing this field further. However, the extent and implications of gene transfer between prokaryotes and eukaryotes still raise controversies. This multi-authored volume introduces various means by which DNA can be exchanged, covers gene transfer between prokaryotes and their viruses as well as between bacteria and eukaryotes, such as fungi, plants and animals, and addresses the role of horizontal gene transfer in human diseases. Aspects discussed also include the relevance for virulence and drug resistance development on one hand, and for the occurrence of naturally derived antibiotics and other secondary metabolites on the other hand. This book offers new insights to anyone interested in genome evolution and the exchange of DNA between the different domains of life, the genetic toolkit for adaptation and the emergence of multidrug resistant bacteria.
Although the human genome exists apart from society, knowledge about it is produced through socially-created language and interactions. As such, genomicists' thinking is informed by their inability to escape the wake of the 'race' concept. This book investigates how racism makes genomics and how genomics makes racism and 'race,' and the consequences of these constructions. Specifically, Williams explores how racial ideology works in genomics. The simple assumption that frames the book is that 'race' as an ideology justifying a system of oppression is persistently recreated as a practical and familiar way to understand biological reality. This book reveals that genomicists' preoccupation with 'race'-regardless of good or ill intent-contributes to its perception as a category of differences that is scientifically rigorous.
This collection reviews developments in DNA profiling across jurisdictions with a focus on scientific and technological developments as well as their political, ethical, and socio-legal aspects. Written by leading scholars in the fields of social studies of forensic science, science and technology studies and socio-legal studies, the book provides state-of-the-art analyses of forensic DNA practices in a diverse range of jurisdictions, new and emerging forensic genetics technologies and issues of legitimacy. The work articulates the various forms of technolegal politics involved in the everyday, standardised and emerging practices of forensic genetics and engages with the most recent scholarly and policy literature. In analyses of empirical cases, and by taking into account the most recent technolegal developments, the book explores what it means to live in a world that is increasingly governed through anticipatory crime control and its related risk management and bio-surveillance mechanisms, which intervene with and produce political and legal subjectivities through human bodies in their DNA. This volume is an invaluable resource for those working in the areas of social studies of forensic science, science and technology studies, socio-legal studies, sociology, anthropology, ethics, law, politics and international relations.
This book provides the first and only comprehensive description and detailed summary of the genetics, structure, function, mechanisms of action, evolution and engineering of homing endonucleases and inteins. These two unique protein superfamilies, which are tied together through their frequent fusion and coevolution, have generated considerable excitement for their fundamental, structural, and functional properties, their evolution as parasitic elements, and their widespread applications as gene targeting agents and as instruments for the generation of modified proteins and novel protein combinations.
With its complex and extensively regulated metabolism, the study of the RNA lifecycle demands tools that allow for the localization of RNAs to be observed either in an in situ setting or, preferably, under in vivo conditions. In RNA Detection and Visualization: Methods and Protocols, the best and brightest investigators provide an up-to-date and in-depth description of basic methods and protocols used for detecting and visualizing mRNAs in both fixed and live cells, from bacteria to mammals. For novices and experts alike, this mix of classic in situ hybridization and advanced live imaging techniques, cell fractionation and affinity purification procedures, and bioinformatics tools gives researchers the most complete and extensive array of research aids possible. As a volume written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and expert tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, RNA Detection and Visualization: Methods and Protocols offers well-honed techniques in order to inspire researchers around the world to further our knowledge of the vital biological significance of RNA.
Describe new developments in non-opsin-based optogenetic tools Introduce cutting-edge methods for precise modulation of cell signaling Highlight applications of optogenetic regulation of cellular functions Cover contributions from an international team of leading experts
This book aims to comprehensively review the current cell-based strategies under investigation to achieve the regeneration of human hair follicles. The unique capacity of the human hair follicle to self-renew explains why this complex "mini-organ" has always attracted so much interest as a model for researchers to study stem cell biology and regenerative medicine. The hair follicle is considered a main reservoir of cutaneous stem cells, containing several pools of epithelial, melanocyte, and mesenchymal stem cells involved in hair follicle self-regeneration and pigmentation. In addition, while some of the different follicular cell types contribute to hair shaft growth, others participate in very important interfollicular functions such as dermal remodeling, re-epithelialization after wounding, and cutaneous stem cell homeostasis. The idea of human hair follicle regeneration either "de novo" or by activating dormant miniaturized follicles is not new, yet still continues to arouse enormous interest in the pursuit of a definitive cure for baldness. In contrast to hair follicle regeneration in mice, the attempts made with human follicles have been disappointing in terms of efficiency. However, recent advances in stem cell biology-as well as the appearance of new technologies like 3D printing-have revived expectations in this field of research. This book is divided into four sections. The first part includes an overview of the strategies used in hair follicle regeneration and a historical summary of the most important achievements to date. Parts two and three comprise the main body of the book, with detailed descriptions of the cells and tissue structures involved in hair follicle regeneration, followed by an elaboration of the different therapeutic strategies, engineering techniques, and a clinician's perspective of stem cell-based therapies in hair loss treatments. Finally, the fourth part reviews the important contribution of the hair follicle in healing cutaneous wounds through the regeneration and remodeling of the dermis and epidermis after injury, as well as wound induced hair follicle neogenesis that occurs when the skin is injured.
This book reviews recent knowledge of the role of stem cells in the gastrointestinal system. It covers extensive topics for each organ, including the pancreas, esophagus, liver, and colon, while also discussing the contributions of stem cells to therapeutic approaches toward gastrointestinal diseases, including inflammatory bowel diseases. Comprehensive and cutting-edge, Digestive System Diseases: Stem Cell Mechanisms and Therapies deepens a reader's theoretical expertise in gastrointestinal stem cell biology. It furthers scientists' understanding of gastrointestinal stem cells and, most importantly, the development of novel therapeutic targets. Graduate and postdoctoral students, medical doctors (including gastroenterologists and surgeons), and principal investigators in both academia and industry will benefit from this book. In particular, it is a valuable resource for professionals within the fields of gastrointestinal research, pharmaceutical science, molecular biology, regenerative medicine, and genetics.
Stephen Jay Gould (1941-2002) was a leading critic of human behavioral genetics, human sociobiology, evolutionary psychology, and the modern evolutionary synthesis. "Why Gould Was Wrong" explains why Gould's claims were horribly wrong.
Cancer Health Equity Research, Volume 146 in the Advances in Cancer Research series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Pubertal Mammary Development as a 'Susceptibility Window' for Breast Cancer Disparity, Review of Patient Navigation Interventions to Address Barriers to Participation in Cancer Clinical Trials, Racial Disparities in Ovarian Cancer Research, Mighty Men: A Faith-Based Weight Loss Intervention to Reduce Cancer Risk in African American Men, Design of a Patient Navigation Intervention to Increase Rates of Surgery among African Americans with Early-Stage Lung Cancer, and much.
This book brings together what is currently known in terms of basic research in the field of long noncoding RNAs (lncRNAs) and builds on this to delve more deeply in the specific roles that lncRNAs are playing during inflammation. The book provides readers with basic knowledge on lncRNAs: from understanding the complexity of the transcriptome, conservation, structure and the tools used to investigate these aspects, to how we use this information to study lncRNAs in a specific biological context. The volume covers the emerging roles of lncRNAs in the initial stages of inflammation as well as their roles in specific inflammatory diseases including arthritis, lupus, diabetes and cardiovascular disease. The book also shows the emerging interest in using lncRNAs as a therapeutic target and how this could impact our ability to diagnose and treat inflammatory diseases in the future.
This detailed book presents recent methodologies for the task of inspecting the genomic world of plants, extracting valuable information, and presenting it in a readable way. With a focus on bioinformatics tools, the volume explores phylogenetics and evolution, Omics analysis, as well as experimental procedures for trait characterization. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of vital expert implementation advice that will lead to successful results. Authoritative and practical, Plant Comparative Genomics serves as an ideal resource for researchers looking to implement comparative tools in order to explore their genomic data for their daily scientific work. |
![]() ![]() You may like...
Tungsten - Properties, Chemistry…
Erik Lassner, Wolf-Dieter Schubert
Hardcover
R10,766
Discovery Miles 107 660
A Programmer's Guide to Computer Science…
William M Springer
Hardcover
R1,188
Discovery Miles 11 880
Liquid Crystalline Semiconductors…
Richard J. Bushby, Stephen M Kelly, …
Hardcover
The History and Philosophy of Polish…
K. Mulligan, K. Kijania-Placek, …
Hardcover
R3,632
Discovery Miles 36 320
Metallopharmaceuticals I - DNA…
Michael J Clarke, Peter J. Sadler
Hardcover
R5,994
Discovery Miles 59 940
The Chemistry of the Actinide Elements…
JJ Katz, G.T. Seaborg, …
Hardcover
R17,237
Discovery Miles 172 370
Spectroscopic Properties of Inorganic…
G. Davidson, E.A.V. Ebsworth
Hardcover
R11,167
Discovery Miles 111 670
Multifunctional Mesoporous Inorganic…
Cesar A.C. Sequeira, Michael J. Hudson
Hardcover
R6,191
Discovery Miles 61 910
|