Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
"Biomimetics and Stem Cells: Methods and Protocols" collects a series of approaches to demonstrate the role and value of biomimetics for the better understanding of stem cell behavior and the acceleration of their application in regenerative medicine. Recent advances in tissue engineering are enabling scientists to instruct stem cells toward differentiating into the right phenotypes, in the right place and at the right time. Given these advances, biomimetic environments are being designed to recapitulate, in vitro, the combinations of factors known to guide tissue development and regeneration in vivo and thereby help unlock the full potential of the stem cells. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Practical and essential, "Biomimetics and Stem Cells: Methods and Protocols" focuses on the use of biomimetic systems for stem cells in order to aid in moving this vital field of study forward."
In Human Cloning a panel of distinguished philosophers, medical
ethicists, religious thinkers, and social critics tackle the thorny
problems raised by the now real possibility of human cloning. In
their wide ranging reviews, the distinguished contributors
critically examine the major arguments for and against human
cloning, probe the implications of such a procedure for society,
and critically evaluate the "Report and Recommendations of the
National Bioethics Advisory Commission." The debate includes both
religious and secular arguments, as well as an outline of the
history of the cloning debate and a discussion of human cloning's
impact on our sense of self and our beliefs about the meaning of
life.
This compendium presents some of the major applications of neutron scattering techniques to problems in biology. It is a record of the papers presented at the Neutrons in Biology Conference, the third in an occasional series held to highlight progress in the field and to provide a focus for future direction. The strength ofthe neutron scattering technique remains principally in the manipula tion of scattering density through hydrogen and deuterium atoms. The development ofad vanced detectors, innovative instrument and beamline components, and sophisticated data acquisition systems through the 1970s and early 1980s provided a sound foundation for the technique. With continued development, some of the exotic and expensive equipment has become affordable by the medium-sized facilities, thereby broadening the user base considerably. Despite problems with the major neutron sources in the late 1980s and early 1990s, some spectacular results have been achieved. Whilst the high and medium flux beam reac tors will continue to make a major impact in the field, the results from the first experi ments, and the planned developments on spallation neutron sources, clearly indicate that the technique has enormous potential.
This book updates and expands on various aspects of the vasculature's microenvironment and how these regulate differentiation and assembly. Discussed in this new edition are efforts to capitalize on combing engineering techniques, to study and manipulate various biophysical cues, including: endothelial cell- pericyte interactions (Davis), mechanical forces to regulate vascularization in three-dimensional constructs (Levenberg), how matrix properties and oxygen tension regulate vascular fate and assembly (Gerecht), biophysical cues in relation to vascular aging (Ferreira), 3D printing of complex vascularized tissue (Hibino), the harnessing of biophysical cues for therapeutic vasculature interfacing with the damaged brain (Segura) and finally, the infarcted heart (Grayson). This second edition of Biophysical Regulation of Vascular Differentiation and Assembly provides an interdisciplinary view of vasculature regulation thru various biophysical cues and presents recent advances in measuring and controlling such parameters. This book will be of interest to biologists, biophysicists and engineers who work with vascular differentiation and assembly.
The fourth edition of this popular textbook retains its focus on the fundamental principles of gene manipulation, providing an accessible and broad-based introduction to the subject for beginning undergraduate students. It has been brought thoroughly up to date with new chapters on the story of DNA and genome editing, and new sections on bioethics, significant developments in sequencing technology and structural, functional and comparative genomics and proteomics, and the impact of transgenic plants. In addition to chapter summaries, learning objectives, concept maps, glossary and key word lists the book now also features new concluding sections, further reading lists and web-search activities for each chapter to provide a comprehensive suite of learning resources to help students develop a flexible and critical approach to the study of genetic engineering.
Splicing of primary RNA transcript is a quasi-systematic step of gene expression in higher organisms. This is the first book to highlight the medical implications, i.e. diseases, caused by alternative splicing. Alternative splicing not only vastly increases protein diversity but also offers numerous opportunities for aberrant splicing events with pathological consequences. The book also outlines possible targets for therapy.
The last 15 years in development of biology were marked with accumulation of unprecedentedly huge arrays of experimental data. The information was amassed with exclusively high rates due to the advent of highly efficient experimental technologies that provided for high throughput genomic sequencing; of functional genomics technologies allowing investigation of expression dynamics of large groups of genes using expression DNA chips; of proteomics methods giving the possibility to analyze protein compositions of cells, tissues, and organs, assess the dynamics of the cell proteome, and reconstruct the networks of protein-protein interactions; and of metabolomics, in particular, high resolution mass spectrometry study of cell metabolites, and distribution of metabolic fluxes in the cells with a concurrent investigation of the dynamics of thousands metabolites in an individual cell. Analysis, comprehension, and use of the tremendous volumes of experimental data reflecting the intricate processes underlying the functioning of molecular genetic systems are unfeasible in principle without the systems approach and involvement of the state-of-the-art information and computer technologies and efficient mathematical methods for data analysis and simulation of biological systems and processes. The need in solving these problems initiated the birth of a new science- postgenomic bioinformatics or systems biology in silico.
Few would dispute the truth of the statement People are Different', but there is much controversy over why. This book authoritatively explains the methods used to understand human variation, and extends them far beyond the primary nature or nurture' question. After chapters on basic statistics, biometrical genetics, matrix algebra and path analysis, there is a state-of-the-art account of how to fit genetic models using the LISREL package. The authors explain not only the assumptions of the twin method, but how to test them. The elementary model is expanded to cover sex limitation, sibling interaction, multivariate and longitudinal data, observer ratings, and twin-family studies. Throughout, the methods are illustrated by applications to diverse areas such as obesity, major depression, alcohol comsumption, delinquency, allergies, and common fears.
The in situ hybridization and PCR technologies are now well-established molecular techniques for studying chromosomal aneuploidy and rearran- ments, gene localization and expression, and genomic organization. Over the last decade, we have seen increasing applications in these fields. By combining the high sensitivity of the PCR reaction and the cytological localization of target sequences, both PRINS and in situ PCR techniques have provided highly powerful complements to FISH for in situ cellular and molecular investigations. Both these approaches have several advantages in terms of sensitivity and specificity, owing to the use of primers and to the fast kinetics of annealing and elongation reactions in situ. In the first edition of PRINS and In Situ PCR Protocols edited by John R. Gosden, experts in the field presented in detail a variety of applications of PRINS and in situ PCR techniques, in a wide range of clinical conditions. Since the publication of this successful reference book, there have been s- nificant improvements in in situ detection techniques. This completely revised and updated second edition presents a compreh- sive selection of new procedures developed in the field of PRINS and in situ PCR technologies. The book has two sections. Part I, Basic Methodology, contains chapters that provide useful protocols for many variations of PRINS and in situ PCR, including a new fast multicolor PRINS method, and protocols for PRINS detection of unique sequences in situ.
RNA Biochemistry and Biotechnology describes various aspects of nucleic acid and protein structure, mainly RNA structure and proteins, interacting with specific RNA species. Papers deal with DNA protein interactions, telomerase, aminoacyl-tRNA synthetases, elongation factor Tu, DNA repair, RNA structure, NMR technology, RNA aptamer interaction of biological macromolecules with metal ions. Two papers deal with theoretical aspects of RNA structure production and computer modelling. Many papers describe the possibility of commercial application of RNA biotechnology. One article discusses the impact of direct democracy on basic science supporting biotechnology. Readership: Advanced graduate students, Ph.D. students and young scientists as well as specialists in the field.
This book provides a comprehensive overview of recent novel coronavirus (SARS-CoV-2) infection, their biology and associated challenges for their treatment and prevention of novel Coronavirus Disease 2019 (COVID-19). Discussing various aspects of COVID-19 infection, including global epidemiology, genome organization, immunopathogenesis, transmission cycle, diagnosis, treatment, prevention, and control strategies, it highlights host-pathogen interactions, host immune response, and pathogen immune invasion strategies toward developing an immune intervention or preventive vaccine for COVID-19. An understanding of the topics covered in the book is imperative in the context of designing strategies to protect the human race from further losses and harm due to SARS-CoV-2 infection causing COVID-19.
This volume brings together the disciplines of plant and animal genome research, and serves as an opportunity for scientists from both fields to compare results, problems and prospects.
Legionellosis is a disease of significant medical and public interest. Legionella is commonly found in aquatic habitats where its ability to survive and to multiply within different protozoa equips the bacterium to be transmissible and pathogenic to humans. In addition, Legionella has become a favored model system to analyze the mechanisms of bacterial survival, acquisition of nutrients, and intracellular replication. Following the recent publication of the genome sequences of four L. pneumophila strains, it is now feasible to investigate the whole genome in silico, the transcriptome via micro arrays, and the proteome by two-dimensional gel electrophoresis. Research in the fields of clinical features, diagnosis, treatment, and epidemiology continues to generate new data. The topics covered by this volume range from the history of the identification of Legionella and clinical disease treatment, to the microbe's gene expression and secretion systems, as well as its strategies for intracellular multiplication and nutrient acquisition. The main focus of the book is the current state of many of the most critical features of Legionella. Internationally renowned authors have contributed chapters describing and discussing the latest research findings with an emphasis on molecular aspects. The editors and authors have produced an excellent book that will be an extremely useful reference source. This comprehensive publication is aimed at readers with teaching or research interests in microbiology, genetics, genomics, infectious diseases, or clinical research.
The intersection of race, ethnicity and genomics has recently been a focus of debate and concern. The key areas of debate are pharmacogenomics and, to a lesser extent, racial profiling in the criminal justice system. The former poses the question as to whether certain "races" are genetically predisposed towards given diseases and whether they metabolize drugs differently; with the latter debating whether DNA analyses accurately identify the "race" of an individual. This book takes a different approach, while acknowledging the importance of these debates and their role in shaping what the issues are perceived to be in thinking about the intersection of race, ethnicity and genomics. We are interested in exploring the interconnections between race, ethnicity and nation and kinship, always bearing in mind that kinship, as a domain of human experience and a field of social study, has been reshaped by the genomic and biotechnological revolution. Peter Wade is Professor of Social Anthropology at the University of Manchester. His publications include Blackness and Race Mixture (1993), Race and Ethnicity in Latin America (1997), Music, Race and Nation: Musica Tropical in Colombia (2000), Race, Nature and Culture: An Anthropological Perspective (2002). His current research focuses on issues of racial identity, embodiment and new genetic and information technologies.
There can be no doubt that some ofthe most spectacular advances made in science over the past few decades have been in the isolation, analysis, and manipulation of nucleicacids. Thishas ledtoamuchgreaterunderstandingofmechanismsandprocesses across many fields of bioscience, such as biochemistry, microbiology, physiology, pharmacology, and the medical sciences to name a few. It has also led to the growth of the biotechnology industry, which seeks to develop and commercialize many ofthese important processes and methods. Much ofthis has come about because ofthe devel opment of numerous molecular biology and genetic manipulation techniques. The discovery of restriction enzymes and the development of cloning vectors in the early 1970sopenedthedoortowaysofisolatingandmanipulatingnucleic acidsthathadnever been thought possible. Gene probe labeling and hybridization were developed and refined toprovidepowerfulmethodsofanalysis. These-togetherwiththedevelopment of DNA sequencing methods, protein engineering techniques, and PeR-have all continued to contribute substantially to the understandingofbiological processes at the molecular level. Theprotocols for these importantmethods are the focus ofThe Nucleic AcidProtocols Handbook, whose aim is to provide a comprehensive set oftechniques in onevolume thatwill enable the isolation, analysis, and manipulationofnucleic acids to be readily undertaken. The NucleicAcidProtocols Handbook is divided into 10 parts; within each there are approximately 10chapters. The first fourpartsfollow oneanotherlogically: nucleic acid extraction (Part I), basic separation and analysisofDNA (II), through probe design and labeling (III), and RNA analysis techniques (IV). The following three sections deal with gene libraryconstruction andscreening(V), DNA sequencing (VI), andthe polymerase chain reaction (VII)."
The potential now exists in many experimental systems to transfer a cloned, modified gene back into the genome of the host organism. In the ideal situation, the cloned gene is returned to its homologous location in the genome and becomes inserted at the target locus. This process is a controlled means for the repair of DNA damage and ensures accurate chromosome disjunction during meiosis. The paradigm for thinking about the mechanism of this p- cess has emerged primarily from two sources: (1) The principles of reaction mechanics have come from detailed biochemical analyses of the RecA protein purified from Escherichia coli; and (2) the principles of information transfer have been derived from genetic studies carried out in bacteriophage and fungi. A compelling picture of the process of homologous pairing and DNA strand exchange has been influential in directing investigators interested in gene t- geting experiments. The ability to find and pair homologous DNA molecules enables ac- rate gene targeting and is the central phenomenon underlying genetic recombi- tion. Biochemically, the overall process can be thought of as a series of steps in a reaction pathway whereby DNA molecules are brought into homologous register, the four-stranded Holliday structure intermediate is formed, hete- duplex DNA is extended, and DNA strands are exchanged. Not much is known about the biochemical pathway leading to homologous recombination in euka- otes.
Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g., ethyl methane sulphonate) have been widely used to induce mutations."
When the late Professor C. D. Darlington founded what developed into the International Chromosome Conferences in Oxford in 1964, he was concerned that scientists who worked on different aspects of chromosomes, or who studied them in different ways, should have the opportunity of "discussing the fundamental problems of chromosomes with one another". The fact that well over 300 scientists with a wide variety of interests came to Edinburgh in August 1992 for the 11th International Chromosome Conference shows that there is still the same need, and also the desire among chromosomologists to have such discussions. The present volume contains almost all the invited contributions, and attests to the diversity of approaches and applications in chromosomal studies. A few years ago it may have seemed to some that chromosome studies were being superseded by molecular biology, but the molecular biologists have now realized that they need to know about chromosomes, and indeed an important, if ill-defined discipline of 'molecular cytogenetics' has grown up in recent years. We are pleased that in planning the Conference and this book, so much of the work presented is at the interface between cytogenetics and molecular biology. This will surely continue in the future, as boundaries between disciplines are largely artificial, and each has much to learn from the others.
This volume describes current fundamental advances in the experimental and theoretical study of molecular dynamics and stochastic dynamic simulations, X-ray crystallography and NMR of biomolecules, the structure of proteins and its prediction, time resolved Fourier transform IR spectroscopy of biomolecules, the computation of free energy, applications of vibrational CD of nucleic acids, and solid state NMR. Further presentations include recent advances in UV resonance Raman spectroscopy of biomolecules, semiempirical MO methods, empirical force fields, quantitative studies of the structure of proteins in water by Fourier transform IR, and density functional theory. Metal-ligand interactions, DFT treatment of organometallic and biological systems, and simulation vs. X-ray and far IR experiments are also discussed in some detail. The text provides a broad perspective of the current theoretical aspects and experimental findings in the field of biomolecular dynamics, revealing future research trends, especially in areas where theoreticians and experimentalists could collaborate.
The role of RNA in regulating gene expression has become a topic of intense interest. In this book, internationally recognized experts in RNA research explore and discuss the methods whereby RNA can regulate gene expression with examples in yeast, Drosophila, mammals, and viral infection, as well as highlight the application of this knowledge in therapeutics and research. Topics include: gene silencing and gene activation, the hammerhead ribozyme, epigenetic regulation, RNAi, microRNA, and pyknons. This comprehensive publication is intended for readers with teaching or research interests in RNA, the regulation of gene expression, genetics, genomics, and molecular biology.
The temptations of a new genetically informed eugenics and of a revived faith-based, world-wide political stance, this study of the interaction of science, religion, politics and the culture of celebrity in twentieth-century Europe and America offers a fascinating and important contribution to the history of this movement. The author looks at the career of French-born physician and Nobel Prize winner, Alexis Carrel (1873-1944), as a way of understanding the popularization of eugenics through religious faith, scientific expertise, cultural despair and right-wing politics in the 1930s and 1940s. Carrel was among the most prestigious experimental surgeons of his time who also held deeply illiberal views. In Man, the Unknown (1935), he endorsed fascism and called for the elimination of the unfit. The book became a huge international success, largely thanks to its promotion by Readers' Digest as well as by the author's friendship with Charles Lindbergh. In 1941, he went into the service of the French pro-German regime of Vichy, which appointed him to head an institution of eugenics research. His influence was remarkable, affecting radical Islamic groups as well Le Pen's Front National that celebrated him as the founder of ecology. It includes a foreword by Herman Lebovics.
A comprehensive collection of readily reproducible techniques for the manipulation of recombinant plasmids using the bacterial host E. coli. The authors describe proven methods for cloning DNA into plasmid vectors, transforming plasmids into E. coli, and analyzing recombinant clones. They also include protocols for the construction and screening of libraries, as well as specific techniques for specialized cloning vehicles, such as cosmids, bacterial artificial chromosomes, l vectors, and phagemids. Common downstream applications such as mutagenesis of plasmids, recombinant protein expression, and the use of reporter genes, are also described.
This book contains complete information on Capsicum genetic resources, diversity, evolution, history and advances in capsicum improvement from classical breeding to whole genome sequencing, genomics, databases and its impact on next generation pepper breeding. Capsicum is one of the most important Solanaceae crops grown worldwide as vegetables and spices. Due to its high economic value and to meet the demands of enormous population growth amid biotic and abiotic stresses, there has been an ongoing breeding program utilizing available genetic resources with desired traits to increase the sustainable productivity of this crop for several decades. However, the precision breeding of this crop for desired traits only started with the advent of molecular markers. The recent advances in high-throughput genome sequencing technologies helped in the quick decoding of transcriptome, epigenome, nuclear and organeller genomes, thereby enhancing our understanding of the structure and function of the Capsicum genome, and helping in genomics assisted breeding. These advanced technologies coupled with conventional mapping have greatly contributed towards dissection and manipulation of economically important traits more precisely and made less time consuming.
This new volume reviews current progress on different approaches of in vivo reprogramming technology. Leaders in the field discuss how in vivo cell lineage reprogramming can be used for tissue repair and regeneration in different organs, including brain, spinal cord, pancreas, liver and heart. Recent studies on in vivo cell reprogramming towards pluripotency are reviewed; examples are given to show its potential in regenerative medicine. In each chapter, the regenerative potential of different in vivo reprogramming approaches is discussed in detail. More specifically, how different tissue failures or damages can be treated with this technology is explained. Examples from various animal models are given and the regenerative potential of in vivo reprogramming is compared to that of cell transplantation studies. The last chapter discusses current challenges of these preclinical studies and gives suggestions in order to improve the current strategies. Future directions are indicated for the transition of in vivo reprogramming technology to clinical settings. This is among the first books in the literature which specifically focuses on the in vivo reprogramming technology in regenerative medicine and these chapters collectively cover one of the most important and exciting topics of regenerative medicine.
This handbook was designed as a reference tool for forest geneticists, tree breeders and other tree improvement personnel, as well as a textbook for university courses and short-courses at the graduate level in quantitative genetics. The chapters focus on the decision points faced by quantitative geneticists and breeders in designing programs and analyzing data. Beginning with a justification for the use of quantitative genetics in decision making in tree improvement programs, the book continues with a brief presentation of fundamental principles, followed by discussions and evaluations of mating designs and field test designs, the use of best linear predictors to estimate breeding values, the use of computer programs in the analysis of variance for genetic information, the deployment of genetically improved stock for capturing gains, the use of economic models for program justification, and the development of seed transfer guidelines. |
You may like...
Genetic Enhancement in Major Food…
Kul Bhushan Saxena, Rachit K. Saxena, …
Hardcover
R3,956
Discovery Miles 39 560
Adaptation and Human Behavior - An…
Lee Cronk, Napoleon A Chagnon, …
Hardcover
R3,905
Discovery Miles 39 050
O-GlcNAcylation and Cancer
Ikram El Yazidi-Belkoura, Tony Lefebvre
Hardcover
R923
Discovery Miles 9 230
Introduction to Genetic Analysis Achieve…
Anthony J.F. Grifiths, John Doebley, …
Mixed media product
R2,368
Discovery Miles 23 680
Genetics Essentials with Achieve Pack
Benjamin Pierce
Mixed media product
R2,200
Discovery Miles 22 000
|