![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Specific complexes of protein and RNA carry out many essential
biological functions, including RNA processing, RNA turnover, RNA
folding, as well as the translation of genetic information from
mRNA into protein sequences. Messenger RNA (mRNA) decay is now
emerging as an important control point and a major contributor to
gene expression. Continuing identification of the protein factors
and cofactors, and mRNA instability elements, responsible for mRNA
decay allow researchers to build a comprehensive picture of the
highly orchestrated processes involved in mRNA decay and its
regulation.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
Great disparities exist between organisms with regard to the relative ease of chromosomal mutagenesis and manipulation. In Chromosomal Mutagenesis, a team of experts provide a variety of chromosomal manipulation techniques, including insertional gene disruptions, gene knockouts, stimulated homologous recombination techniques and other novel tools, for both prokaryotic and eukaryotic organisms, and attempt to expand the genetic toolbox beyond model organisms. Following the format of the highly successful Methods in Molecular Biology format, each chapter offers step-by-step laboratory instructions, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Chromosomal Mutagenesis covers state-of-the-art techniques that are staged to expand, if not revolutionize, genetic analysis in the long neglected and relevant cell types.
Nucleic acids are the fundamental building blocks of DNA and RNA
and are found in virtually every living cell. Molecular biology is
a branch of science that studies the physicochemical properties of
molecules in a cell, including nucleic acids, proteins, and
enzymes. Increased understanding of nucleic acids and their role in
molecular biology will further many of the biological sciences,
including genetics, biochemistry, and cell biology. "Progress in
Nucleic Acid Research and Molecular Biology" is intended to bring
to light the most recent advances in these overlapping disciplines
with a timely compilation of reviews comprising each volume.
Gene therapy offers many conceptual advantages to treat muscle diseases, especially various forms of muscular dystrophies; however, it faces a number of unique challenges, including the need to deliver a therapeutic vector to all muscles throughout the body. In Muscle Gene Therapy: Methods and Protocols, expert researchers in the field present a collection of techniques aimed at bridging the translational gap in muscle gene therapy between the prevalent rodent models and vitally important larger animal models. Divided into three sections, this volume examines basic protocols for optimizing the muscle gene expression cassette and for evaluating the therapeutic outcomes, new developments in muscle gene therapy technology such as adeno-associated viral vector (AAV), oligonucleotide-mediated exon-skipping, and novel RNA-based strategies, and step-by-step guidance on muscle gene delivery in swine, ovine, canine, and non-human primates. Written in the highly successful Methods in Molecular Biology(TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, detailed, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Muscle Gene Therapy: Methods and Protocols serves as an invaluable resource for graduate students, post-doctoral fellows, and principle investigators pursuing the crucial advancement of muscle disease gene therapy in the hope of someday curing these debilitating disorders.
Ribonucleases are a ubiquitous and functionally diverse group of enzymes that have a common ability to cleave RNA. Either through scission of internal phosphodiesters, or removal of nucleotides from RNA 5' or 3' ends, ribonucleases perform essential roles in gene expression and regulation, genome replication and maintenance, host defense, stress response, and viral strategies of infection. Ribonucleases have also served as highly informative models to understand virtually every aspect of biomolecular structure and function. The fifteen chapters in this volume are written by recognized researchers in the field, and provide in-depth analyses of the major ribonuclease families. Particular focus is given to the relation of ribonuclease structure and mechanism to biological function, as well as ribonuclease dysfunction in certain disease states. Other topics include the evolutionary genetics and functional diversification of ribonucleases, engineered ribonucleases as anti-cancer agents, the mechanisms of action of artificial ribonucleases, and ribonucleases as models to understand protein folding and stability. This volume should serve as an essential reference for a broad range of researchers and educators with interests in RNA metabolism, enzymology, and gene regulation.
This book provides readers with an overview of the frequent occurrence of asymmetric cell division. Employing a broad range of examples, it highlights how this mode of cell division constitutes the basis of multicellular organism development and how its misregulation can lead to cancer. To underline such developmental correlations, readers will for example gain insights into stem cell fate and tumor growth. In turn, subsequent chapters include descriptions of asymmetric cell division from unicellular organisms to humans in both physiological and pathological conditions. The book also illustrates the importance of this process for evolution and our need to understand the background mechanisms, offering a valuable guide not only for students in the field of developmental biology but also for experienced researchers from neighboring fields.
Historically the field of endocrine research has always been at the
forefront of scientific endeavors. The investigators of these
important breakthroughs in research have been rewarded by numerous
Nobel awards. In the field of diabetes alone, Nobel prizes have
been awarded to researchers who discovered insulin, characterized
the protein and invented radioimmunoassays using insulin as a
paradigm. Not surprisingly, biomedical researchers have always been
attracted by the endocrine system and other similar systems of
intercellular communication.
In the field of forensics, there is a critical need for genetic
tests that can function in a predictive or inferential sense,
before suspects have been identified, and/or for crimes for which
DNA evidence exists but eye-witnesses do not. "Molecular
Photofitting" fills this need by describing the process of
generating a physical description of an individual from the
analysis of his or her DNA. The molecular photofitting process has
been used to assist with the identification of remains and to guide
criminal investigations toward certain individuals within the
sphere of prior suspects.
The presence of modified nucleotides in cellular RNAs has been known for decades and over 100 distinct RNA modifications have been characterized to date. While the exact role of many of these modifications is still unclear, many are highly conserved across evolution and most contribute to the overall fitness of the organism. In recent years, new methods and bioinformatics approaches have been developed for the dissection of modification pathways and functions. These methods intersect a number of related fields, ranging from RNA processing to comparative genomics and systems biology. In addition, many of the techniques described in this volume have broad applicability, particularly in regards to the isolation, characterization, and reconstitution of ribonucleoprotein complexes, expanding the experimental repertoire available to all RNA researchers.
This detailed book contains chapters using unbiased approaches such as chemical and transposon mutagenesis, as well as a protocol for allelic exchange, to make targeted mutants in Staphylococcus, as generating mutants of this bacteria can be accomplished in many ways, depending on the intended changes. Using these methods, the authors have been successful at making mutants that span individual single-nucleotide changes in the chromosome to whole genome mutant libraries. The latter strategy provides a useful tool for high-throughput screening, while single nucleotide changes are an elegant way of teasing apart the importance of single nucleotides in gene expression or to create specific amino acid substitutions to examine protein function. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, The Genetic Manipulation of Staphylococci: Methods and Protocols serves as a vital resource and guide to scientists in the Staphylococcus community as they pursue their studies on these bacteria.
RNA processing plays a critical role in realizing the full
potential of a given genome. One means of achieving protein
diversity is through RNA editing. A diverse array of editing events
has been characterized, affecting gene expression in organisms from
viruses and single cell parasites to humans and plants. The variety
of editing mechanisms has required the development of many
different experimental approaches, many of which are likely to be
broadly applicable, particularly given the interplay between
editing and other cellular processes, including transcription,
splicing, and RNA silencing. This volume not only covers most of
the principal methods employed in the field, but also offers
innovative solutions to the significant challenges posed by these
experimental systems.
This book provides a knowledge-based view to the dynamic capabilities in an organization. The author integrates two existing views on gaining competitive advantage: the Knowledge View which suggests that the capability of organizations to learn faster than competitors is the only source of competitiveness; and the Dynamic Capability View which speculates that a fi rm's competitive advantage rests on it's ability to adapt to changes in the business environment. Using the IT sector in India as a case study, this book provides and tests a new framework-Knowledge-Based Dynamic Capabilities-in the prediction of competitive advantage in organizations.
Volume 59 in the Advances in Genetics serial provides nine chapters
on the most advanced research on the differentiating behaviors
among sexes. With more than 300 pages of articles from leading
international scientists, this volume offers genetic behaviorial
information related to drosophila, mice, birds, voles, and mammals.
Hot topics include sex differences in brain and behavior; genomic
imprinting and the evolution of sex differences; gene regulation;
peptide pheromone production and reception, and more.
Nonmammalian model organisms have become a cornerstone of systems
biology research. Like the Rosetta Stone, which enabled modern
scholars to decode ancient Egyptian hieroglyphics, model organisms
enable biologists to decipher the genetic code underlying the
complex physiological processes common to all life. C. elegans
provides a particularly striking example of the experimental
utility of model organisms. Genetic, molecular and systems
biological characterization of this organism is greatly facilitated
by its short life cycle and high rate reproduction, and by the ease
with which it can be cultured in the laboratory. C. elegans also
has a fully sequenced and well-annotated genome, which is assembled
in readily accessible public databases along with virtually all
other biological data on this organism.
Focusing on in vitro and intracellular RNA structure formation, RNA Folding: Methods and Protocols provides a comprehensive collection of experimental protocols which are suitable to dissect RNA folding pathways and to characterize the structure of RNA folding intermediates at nucleotide or even atomic resolution. The presented techniques include powerful tools with a long tradition in RNA research as well as more advanced, novel methods, thus the methods span multiple disciplines, including molecular biology, biochemistry, biophysics, and computational biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, RNA Folding: Methods and Protocols serves as a vital reference for researchers attempting to gain insights into the secrets of this astounding macromolecule.
The sequencing of several fungi genomes has spurred major advances
in the field. Fungal genomics has been having a pivotal impact on
applied research in agriculture, food sciences, natural resource
management, pharmaceuticals, and biotechnology, as well as to basic
studies in the life sciences. This volume covers exciting new
developments in this growth field, from genomic analysis to human
fungal pathogen genomics, comparative genomics of fungi, and the
genomics of fungal development.
|
You may like...
World Voyage Planner - Planning a Voyage…
Jimmy Cornell, Ivan Cornell
Paperback
R1,057
Discovery Miles 10 570
Steve Redgrave - A Golden Age - The…
Steve Redgrave, Nick Townsend
Paperback
(2)
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R5,937
Discovery Miles 59 370
|