![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
This book presents a comprehensive discussion on the heterogeneity existing between different types of stem cells within the same tissue, for several types of cancers, e.g. glioblastoma stem cells. Recent developments have revealed completely different roles of distinct stem cells within the same organ. Thus, Stem Cells Heterogeneity in Cancer provides a timely update us on the current information on stem cells heterogeneity in various tissues. It also provides a solid foundation of the history of stem cells from specific tissues and the current applications of this knowledge in regenerative medicine. When taken as a whole, alongside its companion volumes Stem Cells Heterogeneity - Novel Concepts, and Stem Cells Heterogeneity in Different Organs, these three books present a comprehensive reference on stem cell heterogeneity in various tissues and current and future applications for regenerative medicine. It is essential reading for advanced cell biology students as well as researchers in stem cells and clinicians.
This book provides insights into the current state of sorghum genomics. It particularly focuses on the tools and strategies employed in genome sequencing and analysis, public and private genomic resources and how all this information is leading to direct outcomes for plant breeders. The advent of affordable whole genome sequencing in combination with existing cereal functional genomics data has enabled the leveraging of the significant novel diversity available in sorghum, the genome of which was fully sequenced in 2009, providing an unmatched resource for the genetic improvement of sorghum and other grass species. Cultivated grain sorghum is a food and feed cereal crop adapted to hot and dry climates, and is a staple for 500 million of the world's poorest people. Globally, sorghum is also an important source of animal feed and forage, an emerging biofuel crop and model for C4 grasses, particularly genetically complex sugarcane.
Recent advances in protein structural biology, coupled with new
developments in human genetics, have opened the door to
understanding the molecular basis of many metabolic, physiological,
and developmental processes in human biology. Medical pathologies,
and their chemical therapies, are increasingly being described at
the molecular level. For single-gene diseases, and some multi-gene
conditions, identification of highly correlated genes immediately
leads to identification of covalent structures of the actual
chemical agents of the disease, namely the protein gene products.
Once the primary sequence of a protein is ascertained, structural
biologists work to determine its three-dimensional, biologically
active structure, or to predict its probable fold and/or function
by comparison to the data base of known protein structures.
Similarly, three-dimensional structures of proteins produced by
microbiological pathogens are the subject of intense study, for
example, the proteins necessary for maturation of the human HIV
virus. Once the three-dimensional structure of a protein is known
or predicted, its function, as well as potential binding sites for
drugs that inhibit its function, become tractable questions. The
medical ramifications of the burgeoning results of protein
structural biology, from gene replacement therapy to "rational"
drug design, are well recognized by researchers in biomedical
areas, and by a significant proportion of the general population.
The purpose of this book is to introduce biomedical scientists to
important areas of protein structural biology, and to provide an
insightful orientation to the primary literature that shapes the
field in each subject.
This book is a comprehensive understanding of the evolution of pre-malignant disease, emphasizing common themes in the field, including stem cell biology and histologic modes of cancer progression between the distal esophagus and stomach. Its sixteen chapters discuss metaplastic tissue change in the upper GI, clonalexpansion of early neoplasia, stem cell dynamics in experimental models, pathology of early esophageal squamous cell carcinoma, therapeutic modalities for esophageal squamous cell carcinoma, pathology of Barrett's esophagus, screening, early detection and novel diagnostic tools for Barrett's esophagus, clonal evolution of Barrett's esophagus, endoscopic therapeutic modalities of early esophageal cancer, pathology of early gastric cancer, and experimental models for gastric cancer. Stem Cells, Pre-neoplasia and Early Cancer of the Upper Gastrointestinal Tract is an integrative text on both the current state of translational research on every cancer development of the upper gastrointestinal tract as well as on novel clinical diagnostic and therapeutic modalities. It highlights a rapidly growing field within cancer research and is essential reading for oncologists, biochemists and advanced graduate students alike. Springer's Advances in Experimental Medicine and Biology series presents multidisciplinary and dynamic findings in the broad fields of experimental medicine and biology. The wide variety in topics it presents offers readers multiple perspectives on a variety of disciplines including neuroscience, microbiology, immunology, biochemistry, biomedical engineering and cancer research.
Microbial population genetics is a rapidly advancing field of investigation with relevance to many areas of science. The subject encompasses theoretical issues, such as the origins and evolution of species, sex, and recombination. Population genetics lays the foundations for tracking the origin and evolution of antibiotic resistance and deadly infectious pathogens and is also an essential tool in the utilization of beneficial microbes. This invaluable book, written by leading researchers in the field, details the current major advances in microbial population genetics and genomics. Distinguished international scientists introduce fundamental concepts, describe genetic tools, and comprehensively review recent data from SNP surveys, whole-genome DNA sequences, and microarray hybridizations. The chapters cover broad groups of microorganisms including viruses, bacteria, archaea, fungi, protozoa, and algae. A major focus is the application of molecular tools in the study of genetic variation. Topics covered include microbial systematics, comparative microbial genomics, horizontal gene transfer, pathogenic bacteria, nitrogen-fixing bacteria, cyanobacteria, microalgae, fungi, malaria parasites, viral pathogens, and metagenomics. Microbial Population Genetics is an essential volume for everyone interested in population genetics, and it is highly recommended reading for all microbiologists.
Our genetic markers have come to be regarded as portals to the past. Analysis of these markers is increasingly used to tell the story of human migration; to investigate and judge issues of social membership and kinship; to rewrite history and collective memory; to right past wrongs and to arbitrate legal claims and human rights controversies; and to open new thinking about health and well-being. At the same time, in many societies genetic evidence is being called upon to perform a kind of racially charged cultural work: to repair the racial past and to transform scholarly and popular opinion about the "nature" of identity in the present. Genetics and the Unsettled Past considers the alignment of genetic science with commercial genealogy, with legal and forensic developments, and with pharmaceutical innovation to examine how these trends lend renewed authority to biological understandings of race and history. This unique collection brings together scholars from a wide range of disciplines-biology, history, cultural studies, law, medicine, anthropology, ethnic studies, sociology-to explore the emerging and often contested connections among race, DNA, and history. Written for a general audience, the book's essays touch upon a variety of topics, including the rise and implications of DNA in genealogy, law, and other fields; the cultural and political uses and misuses of genetic information; the way in which DNA testing is reshaping understandings of group identity for French Canadians, Native Americans, South Africans, and many others within and across cultural and national boundaries; and the sweeping implications of genetics for society today.
This comprehensive reference delivers key information on all aspects of sunflower. With over 20 chapters, this book provides an extensive review of the latest developments in sunflower genetics, breeding, processing, quality, and utilization; including food, energy and industrial bioproduct applications. World-renowned experts in this field review U.S. and international practices, production, and processing aspects of sunflower.
This volume opens by covering two main types of approaches widely used to determine essential genes: single-gene knockouts and transposon mutagenesis, in both prokaryotes and Candida albicans. Given the significant advancement in the computational predictions of microbial essential genes, the second half of the book examines four main types of approaches: comparative genomics, supervised machine learning, constraint-based methods, and corrections of transposon mutagenesis data, as well as databases and servers that are often used in studying gene essentiality. Written in the highly successful Methods in Molecular Biology series format, chapters include an introduction to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Gene Essentiality: Methods and Protocols will aid researchers who wish to further our knowledge in this vital field of study.
Since its discovery in 1998, RNA interference (RNAi) has heralded the advent of novel tools for biological research and drug discovery. This exciting new technology is emerging as a powerful modality for battling some of the most notoriously challenging viral clinical targets, such as the hepatitis C virus (HCV) and the human immunodeficiency virus (HIV). However, several critical issues associated with this novel technology must be resolved before it can progress to testing in human clinical trials, and these have been the target of intensive research in recent years. In this book, expert RNAi specialists from around the world have teamed up to produce a timely and thought-provoking review of the area. The two central themes are: 1) the latest findings on RNAi-virus interactions and 2) progress in the development of RNAi-based antiviral therapeutics. A number of chapters explain general concepts concerned with the role of RNAi in natural antiviral defense mechanisms. Other chapters discuss how to improve the efficacy and safety of RNAi-based antiviral drugs, as well as describe how this technology is being developed as a new therapeutic tool for fighting specific viruses, including HIV, HCV, and respiratory viruses. The book also outlines potential new avenues for research. RNA Interference and Viruses is essential reading for researchers involved in RNAi or antiviral research and is a recommended text for all virology laboratories.
This detailed volume explores the continuing techniques of studying RNA-protein complexes and interactions as research in these areas expand. After an introductory chapter, the book continues with ways to purify RNA-protein complexes assembled in cells or in isolated cellular extracts, methods for measuring various biochemical activities of RNA-interacting proteins or ribonucleoproteins, biochemical methods for measuring direct RNA-protein contact, as well as various new or innovative methods pertinent to the subject. Written for the highly successful Methods in Molecular Biology series, chapters contain brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, RNA-Protein Complexes and Interactions: Methods and Protocols provides a set of useful protocols, both basic and advanced, designed to inspire researchers working with RNA and RNA-interacting proteins.
The technical advances in molecular biology have endowed us with a
wealth of knowledge, which has allowed us to identify the cause of
diseases not only at a single gene level but at a greater
magnitude, where a substitution or deletion of a single base pair
can be identified. Our present task is to establish a clear link
between phenotype and nucleotide sequence. Obviously, a gene is no
longer an imaginary entity. Recent discoveries in a number of
bewildering traits, whose inheritance do not follow simple
mendelian rules, have caused much amazement. For example, fragile
X-syndrome, spine and bulbar muscular atrophy and myotic dystrophy
arise from "triples repeat mutation" and amplification in future
generations. Genetic diseases which are inherited, can now be
diagnosed prenatally; an idea that was once inconceivable.
This book explores the regenerative properties of fetal stem cells, from feto-maternal cell traffic through perinatal stem cells, with a discussion of key topics including stem cell banking, drug screening, in utero stem cell transplantation and ethical considerations. The expertly authored chapters also delve into embryonic, amniotic membrane, and umbilical cord blood stem cells; fetal development models; fetal cell reprogramming; culture methods; disease models; perinatal gene therapy, and more. These chapters are grouped into four sections, each discussing a separate prenatal stem cell population and providing fascinating historical contexts for our knowledge of these systems. Featuring a foreword written by the renowned Dr. Joseph Vacanti of the Harvard Stem Cell Institute, Fetal Stem Cells in Regenerative Medicine: Principles and Translational Strategies is a welcome and timely contribution to the Stem Cell Biology and Regenerative Medicine series. It is essential reading for scientists and researchers, clinicians and residents, and advanced students involved in stem cells, regenerative medicine, tissue engineering, and related disciplines such as embryology.
This text highlights the endogenous regenerative potential of the central nervous system in neonates and juveniles and discusses possible ways it might be manipulated for medical purposes. The first section provides a descriptive summary of the salient steps of human brain development with a discussion of comparisons with other mammalian brains. It also provides a historical perspective on our understanding of ongoing brain development throughout the lifespan and serve to introduce the concept of brain plasticity following injury. The second part is devoted to the endogenous reparative potential of the brain, including its limitations, and articles focusing on defined pathologies (e.g. anoxia/hypoxia, epilepsy, traumatic brain injury and stress) in animal models and in humans pinpoint eventual ways these pathologies might be manipulated. The third and final focuses on the "dark side" of stem cells for brain repair or of the manipulation of spontaneous adaptive events after injury (e.g. genomic instability, sensitization to cancerous transformation and defective neural networks).
Bryan Sykes brings together a world-class set of contributors to debate just what the links between genes, language, and the archaeological record can tell us about human evolution. The eight lively essays offer widely differing opinions, pose more questions than they offer answers, eschew jargon, and pursue controversy. Guaranteed to fascinate anyone who has ever wondered how the fossil record, the incredible diversity of human language, and our genetic inheritance might combine to give a glimpse of human origins.
This book presents a guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory and numerical analysis. Features: introduces the fundamental terms and concepts in the field; discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding; explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training; illustrates how to implement a comparative gene finder; examines NGS techniques and how to build a genome annotation pipeline.
"Stem Cell Biology and Tissue Engineering in Dental Sciences"
bridges the gap left by many tissue engineering and stem cell
biology titles to highlight the importance of research in this
field in the dental sciences.It compiles basic embryology and
developmental biology with keen focus on stem cells, basic cell and
matrix biology with relevance to tissue regeneration and repair,
biomaterials (including nanotechnology) and current applications in
various disciplines of dental science.Tissue engineering is an
interdisciplinary field of biomedical research which combines life,
engineering, and materials sciences to further the maintenance,
repair, and replacement of diseased and damaged tissues. This
emerging area of research applies an understanding of normal tissue
physiology to develop novel biomaterial, acellular, and cell-based
therapies for clinical application. These strategies are being
developed and evaluated as potential treatments of dental
conditions, particularly periodontology, endodontics, dental
implantology, and oral-maxillofacial surgery.
The field of genetics is rapidly evolving, and new medical breakthroughs are occurring as a result of advances in our knowledge of genetics. "Advances in Genetics" continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines. Volume 85 presents an eclectic mix of articles of use to all
human and molecular geneticists on topics including: association
mapping in crop plants; miRNA-mediated crosstalk between
transcripts; unisexual reproduction; and more.
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable. |
You may like...
Popularizing Science - The Life and Work…
Krishna Dronamraju
Hardcover
R1,131
Discovery Miles 11 310
Practical Biostatistics - A Step-by-Step…
Mendel Suchmacher, Mauro Geller
Paperback
R2,054
Discovery Miles 20 540
Clinical Decision Support for…
Beth Devine, Richard David Boyce, …
Paperback
R3,433
Discovery Miles 34 330
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,045
Discovery Miles 30 450
|