Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Landraces possess a very large genetic base in population structure and are dynamic populations of cultivated plants with historical origin, distinct identity, and without any formal crop improvement. They are often genetically diverse, locally adapted, and associated with traditional farming systems. Resistance genes to biotic and abiotic stress factors, which are especially diversified in landraces, are of great interest to plant breeders, faced with global climate challenge. In addition, gene pools made of different landraces grown in different ecological conditions can be used for wheat breeding to enhance quality; yield and other desirable agricultural parameters. An estimated 75% of the genetic diversity of crop plants was lost in the last century due to the replacement of high yielding modern varieties. There is, thus, an urgent need to preserve existing species, not only for posterity but also as a means to secure food supply for a rising world population. In this book, we provide an overview of wheat landraces with special attention to genetic diversities, conservation, and utilization.
This book discusses the role of genetic polymorphism in susceptibility to cancers. The book explores the understanding of differences between the genetic polymorphisms and mutations.It reviews the mechanisms underlying the effect of polymorphism in genes encoding proteins that play an essential role in metabolism, signal transduction, cell cycle, and DNA repair mechanisms. Further, it investigates various techniques that are used for analyzing the genetic polymorphisms. The book contains many chapters which summarize the importance of genetic information obtained from polymorphism-based pharmaco-genetic tests to predict better drug response and life-threatening adverse reactions to chemotherapeutic agents, help in understanding of the impact of SNPs on gene function, and gives overview of the different SNP databases for examination. This book, therefore, serves as an essential guidebook for independent researchers as well as institutions working in this specialised field.
This book offers a unique and comprehensive overview of key RNA-based technologies, as well as their development and applications for the functional genomics of plant coding and non-coding genes. It focuses on the latest as well as classical RNA-based techniques used for studies on small RNAs, long non-coding RNAs and protein-coding genes. These techniques chiefly focus on target mimics (TMs) and short tandem target mimics (STTMs) for small RNAs, and artificial microRNAs (amiRNAs), RNA interference (RNAi) and CRISPR/Cas for genes. Furthermore, the book discusses the latest trends in the field and various modifications of the above-mentioned approaches, and explores how these RNA-based technologies have been developed, applied and validated as essential technologies in plant functional genomics. RNA-based technologies, their mechanisms of action, their advantages and disadvantages, and insights into the further development and applications of these technologies in plants are discussed. These techniques will enable the users to functionally characterize genes and small RNAs through silencing, overexpression and editing. Gathering contributions by globally respected experts, the book will appeal to students, teachers and scientists in academia and industry who are interested in horticulture, genetics, pathology, entomology, physiology, molecular genetics and breeding, in vitro culture & genetic engineering, and functional genomics.
Lecture provides an overview of the progress made in molecular medicine applying genetics and genomics to the understanding, diagnosis, and treatment of human diseases. Specifically, the methods for identifying genes involved in human diseases are described. Examples from 10 genes and diseases will be provided, drawing on the author's research. Topics include examples from simple Mendelian diseases, such as cystic fibrosis, inherited cancers, oncogenes activated by chromosomal translocations, host genes involved in infectious disease, genes identified via genomewide association studies, pathogens causing cancer, and gene families contributing to multiple diseases. For each example, historical details will be provided as background for readers to understand the context and process of the discoveries, technologies explained, and current understanding and treatment implications detailed.
The brains of males and females, men and women, are different, that is a fact. What is debated is how different and how important are those differences. Sex differences in the brain are determined by genetics, hormones, and experience, which in humans includes culture, society, and parental and peer expectations. The importance of nonbiological variables to sex differences in humans is paramount, making it difficult if not impossible to parse out those contributions that are truly biological. The study of animals provides us the opportunity to understand the magnitude and scope of biologically based sex differences in the brain, and understanding the cellular mechanisms provides us insight into novel sources of brain plasticity. Many sex differences are established during a developmental sensitive window by differences in the hormonal milieu of males versus females. The neonatal testis produces large amounts of testosterone which gains access to the brain and is further metabolized into active androgens and estrogens which modify brain development. Major parameters that are influenced by hormones include neurogenesis, cell death, neurochemical phenotype, axonal and dendritic growth, and synaptogenesis. Variance in these parameters results in sex differences in the size of particular brain regions, the projections between brain regions, and the number and type of synapses within particular brain regions. The cellular mechanisms are both region and endpoint specific and invoke many surprising systems such as prostaglandins, endocannabinoids, and cell death proteins. Epigenetic modifications to the genome both establish and maintain sex differences in the brain and behavior. By understanding when, why, and how sex differences in the brain are established, we may also learn the source of strong gender biases in the relative risk and severity of numerous neurological diseases and disorders of mental health. Boys are much more likely to be diagnosed with autism spectrum or attention and hyperactivity disorders, as well as speech and language deficits, compared to girls. By contrast, women are more likely to suffer from affective disorders, such as depression, anxiety, compulsion, and eating disorders and more likely to experience autoimmune and neurodegenerative disorders. Schizophrenia with an early onset is more common in males but a late-onset version is markedly more frequent in females. Male biased disorders have origins in development while female biased disorders are almost exclusively post-puberty. This remarkable shift in disease risk demands our attention. Novel insights into the biological origins of disease are also gained by comparing and contrasting the same processes in different sexes.
The field of genetics is rapidly evolving and new medical
breakthroughs are occuring as a result of advances in knowledge of
genetics. This series continually publishes imporatnt reviews of
the broadest interest to geneticists and their colleagues in
affiliated disciplines.
The field of genetics is rapidly evolving and new medical
breakthroughs are occuring as a result of advances in knowledge of
genetics. This series continually publishes important reviews of
the broadest interest to geneticists and their colleagues in
affiliated disciplines.
This book presents abiotic stresses that cause crop damage in the range of 6-20%. Understanding the interaction of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FPNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a cereal crop in this volume are deliberate on different types of abiotic stresses and their effects on and interaction with crop plants; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; are brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; elucidate on the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
Non-coding RNAs potentially play an active role in modulating gene transcription and epigenetic states. Several genes in differentiated cells may be under some form of RNA based transcriptional and epigenetic regulatory control. This form of regulation may be controlled by selective pressures and influence the adaptability of the cell. The concept that RNA can control epigenetic states impacts on our understanding of the basic fabric of the cell and may have therapeutic potential. Many studies have been carried out on the modulation of gene transcription by non-coding RNAs. This book, written by a group of distinguished scientists under the expert guidance of the editor Kevin V. Morris, represents an important overview and summary of the field to date. The thirteen chapters are organized into three sections: Non-coding RNAs: Form, Function and Diversity; Non-coding RNAs: Gene Regulation and Epigenetics; and Non-coding RNAs: Disease and Therapeutics. This up-to-date volume is an essenti
This book explores the potential applications of animal stem cells in veterinary medicine. It begins with an overview of stem cells and their application in treating various animal diseases, including mastitis. In turn, the book discusses the challenges of using stem cells in regenerative medicine and emphasizes the importance of understanding the action of stem cells and preclinical evidence for ensuring safety and therapeutic efficacy. It also presents methods for the identification, characterization, and quantification of stem cells. Further, it discusses the therapeutic applications of different stem cells, including milk-derived, testicular, and mesenchymal stem cells in veterinary medicine. Lastly, it discusses strategies for and therapeutic applications of genome editing by CRISPER/Cas9 in mammary stem cells. As such, the book offers a valuable resource for students and scientists working in the veterinary sciences and veterinarians.
In studying biology, one of the more difficult factors to predict is how parents' attributes will affect their children and how those children will affect their own children. Organizing and calculating those vast statistics can become extremely tedious without the proper mathematical and reproductive knowledge. Attractors and Higher Dimensions in Population and Molecular Biology: Emerging Research and Opportunities is a collection of innovative research on the methods and applications of population logistics. While highlighting topics including gene analysis, crossbreeding, and reproduction, this book is ideally designed for academics, researchers, biologists, and mathematicians seeking current research on modeling the reproduction process of a biological population.
The book presents comprehensive information on fundamental, and applied knowledge for developing varieties resistant individually as well as to all the major pathogens of crucifers, such as Albugo, Alternaria, Erysiphe, Hyaloperonospora, Plasmodiophora, Leptosphaeria, Sclerotinia, Turnip mosaic virus, Verticillium, and Xanthomonas through the use of latest biotechnological approaches including identification of R genes and their incorporation into agronomically superior varieties. The chapters include the information's viz., principles of host resistance, identification of R-genes sources, inheritance of disease resistance, host resistance signaling network system to multiple stresses. The book also covers transfer of disease resistance, and management of disease resistance. Standardized, reproducible techniques are also included for the researchers of cruciferous crops for developing resistant cultivars. The book deals with the gaps in understanding, knowledge of genomics, and offers suggestions for future research priorities in order to initiate the advance research on disease resistance. This book is immensely useful to the researchers especially Brassica breeders, teachers, extension specialists, students, industrialists, farmers, and all others who are interested to grow healthy, and profitable cruciferous crops all over the world.
This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions.
|
You may like...
Transgenic Crops - Emerging Trends and…
Muhammad Sarwar Khan, Kauser Abdulla Malik
Hardcover
O-GlcNAcylation and Cancer
Ikram El Yazidi-Belkoura, Tony Lefebvre
Hardcover
R923
Discovery Miles 9 230
Adaptation and Human Behavior - An…
Lee Cronk, Napoleon A Chagnon, …
Hardcover
R3,905
Discovery Miles 39 050
Synthetic Genomics - From BioBricks to…
Miguel Fernandez-Nino, Luis H. Reyes
Hardcover
Introduction to Genetic Analysis Achieve…
Anthony J.F. Grifiths, John Doebley, …
Mixed media product
R2,368
Discovery Miles 23 680
Genetics Essentials with Achieve Pack
Benjamin Pierce
Mixed media product
R2,200
Discovery Miles 22 000
|