![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Bringing together nanoscience with stem cell and bacterial cell biology, this thesis is truly interdisciplinary in scope. It shows that the creation of superparamagnetic nanoparticles inside a protein coat, followed by chemical functionalisation of the protein surface, provides a novel methodology for cell magnetisation using incubation times as short as one minute. Crucially, stem cell proliferation and multi-lineage differentiation capacity is not impaired after labelling. Due to the unspecific labelling mechanism, this thesis also shows that the same magnetic protein nanoparticles can be used for rapid bacterial magnetisation. Thus, it is possible to magnetically capture and concentrate pathogens from clinical samples quickly and highly efficiently.
Biochemistry And Genetics of RecQ-Helicases provides a background into the role of helicases in general and RecQ helicases specifically in DNA repair. Helicases- enzymes which break down hydrogen bonds between nucleic acid strands in a nucleoside triphosphate-dependent manner-are ubiquitous in biology, participating in processes as diverse as replication, repair, recombination, transcription, and translation. The RecQ-family helicases are a group of helicases which have important roles in the maintenance of genomic stability in many organisms. In humans, mutations in three RecQ-family helicases lead to disease. This book thoroughly examines these helicases. Mutations in the BLM gene lead to Bloom syndrome, a disorder characterized by a susceptibility to many types of cancer. Mutations in the WRN gene cause Werner syndrome, a disease which in some respects resembles premature aging. Finally, mutations in a newly characterized RecQ-family member, RECQ4, may lead to the very rare recessive disorder Rothmund-Thomson syndrome, a condition characterized by developmental abnormalities and some aging-like manifestations. This book is intended for any researchers invested in these particular disorders, or with a general interest in DNA.
The ability of DNA to exist in configurations other than its classical double-stranded form has been known for many years. There has been a spectacular recent surge of interest in these forms, notably in the three-stranded or triple-helical form. Triplex-like nucleic acids are now known to exist in vivo, and may well participate in significant biological processes. Interest in triple-helical nucleic acids has been greatly stimulated by their potential exploitation to control gene expression, serve as tools in genome mapping strategies, etc. The authors have written an encyclopedic introduction to nucleic acid triplexes based on many years of familiarity with the topic. The book includes information on chemistry, conformation, physical properties, applications, and hypotheses about the biological role of triplexes. It pays particular attention to the different methods for investigating these molecules, a feature which will be welcomed by those new to the field.
As studies using microarray technology have evolved, so have the data analysis methods used to analyze these experiments. The CAMDA (Critical Assessment of Microarray Data Analysis) conference was the first to establish a forum for a cross section of researchers to look at a common data set and apply innovative analytical techniques to microarray data. Methods of Microarray Analysis V includes selected papers from CAMDA'04, and focuses on data sets relating to a significant global health issue, malaria. Previous books focused on classification (V. I), pattern recognition (V. II), quality control issues (V. III), and associating array data with a survival endpoint, lung cancer, (V. IV). The contributions come from research fields including statistics, biology, computer science and mathematics. Part of the book is devoted to review papers, which provide a more general look at various analytical approaches. It also presents some background readings for the advanced topics discussed in the CAMDA papers.
The packaging of genomic DNA together with core histones, linker histones, and other functional proteins into chromatin play key roles in nuclear processes such as transcription, replication, repair and recombination. Research in the last two decades has unveiled the fact that many diseases involve an aberration of these processes at the chromatin level. Similarly, it is becoming clear that different processes such as chromatin assembly, remodeling of chromatin structure coupled to covalent modification of histone and non-histone proteins, chromatin modifying enzymes and last but not the least, important DNA-templated phenomena are the potential drug targets for diseases such as different types of cancer, neurodegenerrative diseases, AIDS etc.
The tools of molecular biology have revolutionised our
understanding of gene structure and function and changed the
teaching of genetics in a fundamental way. The transition from
classical genetics to molecular genetics was initiated by two
discoveries. One was the discovery that DNA has a complementary
double helix structure and the other that a universal genetic code
does exist. Both led to the acceptance of the central dogma that
RNA molecules are made on DNA templates.
The Ontogeny of Human Bonding Systems takes an interdisciplinary look at the phenomena of human bonding. The authors draw upon behavioral genetics, molecular genetics of behavior, cognitive and affective neuroscience, evolutionary psychology, human ethology, behavioral ecology, and the study of attachment processes within developmental psychology. The topics will emphasize human reproduction, and fertility-related behavior in particular, and the evolutionary origins and neural underpinnings of such behavior. This book is for anyone interested in the evolutionary origins, neural underpinnings, and psychological structure involved in human relationships.
Genetic Algorithms in Molecular Modeling is the first book
available on the use of genetic algorithms in molecular design.
This volume marks the beginning of an ew series of books,
Principles in Qsar and Drug Design, which will be an indispensible
reference for students and professionals involved in medicinal
chemistry, pharmacology, (eco)toxicology, and agrochemistry. Each
comprehensive chapter is written by a distinguished researcher in
the field.
The use of molecular biology and biochemistry to study the regulation of gene expression has become a major feature of research in the biological sciences. Many excellent books and reviews exist that examine the experimental methodology employed in specific areas of molecular biology and regulation of gene expression. However, we have noticed a lack of books, especially textbooks, that provide an overview of the rationale and general experimental approaches used to examine chemically or disease-mediated alterations in gene expression in mammalian systems. For example, it has been difficult to find appropriate texts that examine specific experimental goals, such as proving that an increased level of mRNA for a given gene is attributable to an increase in transcription rates. Regulation of Gene Expression: Molecular Mechanisms is intended to serve as either a textbook for graduate students or as a basic reference for laboratory personnel. Indeed, we are using this book to teach a graduate-level class at The Pennsylvania State University. For more details about this class, please visit http: //moltox. cas. psu. edu and select "Courses. " The goal for our work is to provide an overview of the various methods and approaches to characterize possible mechanisms of gene regulation. Further, we have attempted to provide a framework for students to develop an understanding of how to determine the various mechanisms that lead to altered activity of a specific protein within a cell.
Human pluripotent stem cells such as human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) with their unique developmental plasticity hold immense potential as cellular models for drug discovery and in regenerative medicine as a source for cell replacement. While hESC are derived from a developing embryo, iPSC are generated with forced expression of key transcription factors to convert adult somatic cells to ESC-like cells, a process termed reprogramming. Using iPSC overcomes ethical issues concerning the use of developing embryos and it can be generated from patient-specific or disease-specific cells for downstream applications. Pluripotent Stem Cells: Methods and Protocols highlights the best methods and systems for the entire work flow. Divided into four convenient sections, topics include a focus on producing iPSC from diverse somatic sources, media systems for expanding ESC and iPSC with detailed protocols for directed differentiation into specific lineages, commonly used cellular and molecular characterization methods , and the potential application of labeled stem cells with specific methods for cloning, gene delivery and cell engineering. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Pluripotent Stem Cells: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies in an effort to further our knowledge of this essential cellular feature.
A prime reference volume for geneticists, food technologists and biotechnologists in the academic and industrial sectors. Fermentations with lactic acid bacteria determine important qualities such as taste, shelf-life, and food values. New methods of food production require fast and reliable manufacture, which has led to a dramatic surge of interest in the genetic, microbiological and biochemical properties of lactic acid bacteria.
Nearly half of the known species of mammals alive today (more than 1600) are rodents or "gnawing mammals" (Nowak and Paradiso, 1983). The diversity of rodents is greater than that of any other order of mammals. Thus, it is not surprising that the fossil record of this order is extensive and fossil material of rodents from the Tertiary is known from all continents except Antarctica and Australia. The purpose of this book is to compile the published knowledge on fossil rodents from North America and present it in a way that is accessible to paleontologists and mammalogists interested in evolutionary studies of ro dents. The literature on fossil rodents is widely scattered between journals on paleontology and mammalogy and in-house publications of museums and universities. Currently, there is no single source that offers ready access to the literature on a specific family of rodents and its fossil history. This work is presented as a reference text that can be useful to specialists in rodents (fossil or recent) as weIl as mammalian paleontologists working on whole faunas. Because the diversity of rodents in the world is essentially limitless, any monograph that included all fossil rodents would similarly be limitless. Hence, this book is limited to the re cord of Tertiary rodents of North America. The several species of South American (caviomorph) rodents that invaded North America near the end of the Tertiary are also not included in this text."
The underlying idea that cancer is a genetic disease at the
cellular level was postulated over 75 years ago when Boveri
hypothesised that the malignant cell was one that had obtained an
abnormal chromatin content. However, it has been only the last
decade where enormous strides have been made toward understanding
neoplastic development. Explosive growth in the discipline of
cancer genetics is so rapid that any attempt to review this subject
becomes rapidly outdated and continuous revisions are warranted.
Conclusive evidence has been reached associating specific
chromosomal abnormalities to various cancers. We have just begun to
characterise the genes, which are involved in these consistent
chromosomal rearrangements resulting in the elucidation of the
mechanisms of neoplastic transformation at a molecular level. The
identification of over 50 oncogenes has led to a better
understanding of the physiological process. Tumor suppresser genes,
which were discovered through inheritance mechanisms, have further
shed some light towards understanding the loss of heterozygosity
during carcinogenesis. The message emerging with increasing clarity
concerning specific pathways which regulate the fundamental process
of cell division and uncontrolled growth.
In eukaryotic cells, the nuclear genome and its transcriptional apparatus is separated from the site of protein synthesis by the nuclear envelope. Thus, a constant flow of proteins and nucleic acids has to cross the nuclear envelope in both directions. This transport in and out of the nucleus is mediated by nuclear pore complexes (NPCs) and occurs in an energy and signal-dependent manner. Thus, nucleocytoplasmic translocation of macro molecules across the nuclear envelope appears to be a highly specific and regulated process. Viruses that replicate their genome in the cell nucleus are therefore forced to develop efficient ways to deal with the intracellulZlr host cell transport machinery. Historically, investigation of Polyomavirus replication allowed identification ofsequences that mediate nuclear import, which led subsequently to our detailed understanding of the cellular factors that are involved in nuclear import. Transport ofmacromolecules in the opposite direction, however, is less well understood. The investigation of retroviral gene expression in recent years pro vided the first insights into the cellular mechanisms that regulate nuclear export. In particular, the detailed dissection of the function of the human immunodeficiency virus type I (HIV-I) Rev trans-activator protein identified CRMI, as a hona fide nuclear export receptor. CRM I appears to be involved in the nucleocytoplasmic translocation of the vast majority of viral and cellular proteins that have subsequently been found to contain a Rev-type leucine-rich nuclear export signal (NES)."
This book provides a review of imaging techniques and applications in stem cell transplantation and other cell-based therapies. The basis of different molecular imaging techniques is explained in detail, as is the current state of interventional radiology techniques. While the whole is a comprehensive discussion, each chapter is self-sufficient enough so that each can be reviewed independently. The contributors represent years of international and cross-disciplinary expertise and perspective and are all well known in their fields. comprehensive information on the role of clinical and molecular imaging in stem cell therapy from this book reviewed in detail. Essential reading for radiologists and physicians who are interested in developing a basic understanding of stem cell imaging and applications of stem cells and cell based therapies. However, it will also be of interest to clinical scientists and researchers alike, including those involved in stem cell labeling, tracking & imaging, cancer therapy, angiogenesis and cardiac regeneration.
This book defines the field of systems biology, one of the newest and fastest developing fields in science today. It discusses the most effective experimental and computational strategies and highlights new and emerging applications. Cell biologists and other readers will discover many benefits for industry, such as the new network-based drug-target design validation. The authors also thoroughly explore testing.
This volume reflects on the effects of recent discoveries in genetics on a broad range of scientific fields. In addition to neuroscience, evolutionary biology, anthropology and medicine, contributors analyze the effects of genetics on theories of health, law, epistemology and philosophy of biology. Social and moral concerns about the relationship between genetics, society and the individual also figure prominently. Genetic discoveries fuel central contemporary public policy debates concerning, for example, human cloning, equitable access to healthcare or the role of genetics in medicine. Perhaps more fundamentally, advances in genetics are altering our perception of human life and death.
The field of DNA vaccines has undergone explosive growth in the last few years. As usual, some historical precursors of this approach can be d- cerned in the scientific literature of the last decades. However, the present state of affairs appears to date from observations made discreetly in 1988 by Wolff, Malone, Felgner, and colleagues, which were described in a 1989 patent and published in 1990. Quite surprisingly, they showed that genes carried by pure plasmid DNA and injected in a saline solution, hence the epithet "naked DNA," could be taken up and expressed by skeletal muscle cells with a low but reproducible frequency. Such a simple methodology was sure to spawn many applications. In a separate and important line of experimentation, Tang, De Vit, and Johnston announced in 1992 that it was indeed possible to obtain humoral immune responses against proteins encoded by DNA delivered to the skin by a biolistic device, which has colloquially become known as the "gene gun. " The year 1993 saw the publication of further improvements in the me- ods of naked DNA delivery and, above all, the first demonstrations by several groups of the induction of humoral and cytotoxic immune responses to viral antigens expressed from injected plasmid DNA. In some cases, protection against challenge with the pathogen was obtained. The latter result was - questionably the touchstone of a method of vaccination worthy of the name.
Nano-enabled Sustainable and Precision Agriculture is the first single-volume resource to cover this important field using a whole systems approach that considers both opportunities and challenges. The book provides a comprehensive understanding of the role of nanotechnology in agriculture from broad aspects, but also includes a comprehensive view of the interaction of nanomaterials with soil-plant systems. It highlights aspects not described in previous books, including the application of nanoinformatics and artificial intelligence in nano-enabled sustainable agriculture, the application of nanotechnology in alternative forms of agriculture such as hydroponics, and regulatory frameworks for this research field. The book addresses all these aspects by including sections on enhanced sustainability, reduced pollution and enhanced ecosystems' health, and the role of nanoinformatics and machine learning.
After decades of systematic collection of data describing age-related changes in organisms, organs, tissues, cells and macromolecules, biogerontologists are now in a position to construct general principles of ageing and explore various possibilities of intervention using rational approaches. While not giving serious consideration to the claims made by charlatans, it cannot be ignored that several researchers are making genuine attempts to test and develop various means of intervention for the prevention and treatment of age-related diseases, for regaining the functional abilities and for prolonging the lifespan of experimental organisms. This book provides the most up-to-date information and a critical evaluation of a variety of approaches being tried for modulating aging and longevity, including dietary supplementation with antioxidants, vitamins and hormones, genetic engineering, life-style alterations, and hormesis through mild stress. The goal of research on ageing is not to increase human longevity regardless of the consequences, but to increase active longevity free from disability and functional dependence.
Statistics is strongly tied to applications in different scientific disciplines, and the most challenging statistical problems arise from problems in the sciences. In fact, the most innovative statistical research flows from the needs of applications in diverse settings. This volume is a testimony to the crucial role that statistics plays in scientific disciplines such as genetics and environmental sciences, among others. The articles in this volume range from human and agricultural genetic DNA research to carcinogens and chemical concentrations in the environment and to space debris and atmospheric chemistry. Also included are some articles on statistical methods which are sufficiently general and flexible to be applied to many practical situations. The papers were refereed by a panel of experts and the editors of the volume. The contributions are based on the talks presented at the Workshop on Statistics and the Sciences, held at the Centro Stefano Franscini in Ascona, Switzerland, during the week of May 23 to 28, 1999. The meeting was jointly organized by the Swiss Federal Institutes of Technology in Lausanne and Zurich, with the financial support of the Minerva Research Foundation. As the presentations at the workshop helped the participants recognize the po tential role that statistics can play in the sciences, we hope that this volume will help the reader to focus on the central role of statistics in the specific areas presented here and to extrapolate the results to further applications." |
You may like...
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
The Public Debt of the United States…
Jeffrey A. Cantor, Donald R. Stabile
Hardcover
R2,571
Discovery Miles 25 710
The Deficit Myth - How To Build A Better…
Stephanie Kelton
Paperback
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius
Paperback
Biomaterials in Plastic Surgery - Breast…
W. Peters, H. Brandon, …
Hardcover
R3,857
Discovery Miles 38 570
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
|