![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical) > General
Plant Stress Mitigators: Types, Techniques and Functions presents a detailed contextual discussion of various stressors on plant health and yield, with accompanying insights into options for limiting impacts using chemical elicitors, bio-stimulants, breeding techniques and agronomical techniques such as seed priming, cold plasma treatment, and nanotechnology, amongst others. The book explores the various action mechanisms for enhancing plant growth and stress tolerance capacity, including nutrient solubilizing and mobilizing, biocontrol activity against plant pathogens, phytohormone production, soil conditioners, and many more unrevealed mechanisms. This book combines research, methods, opinion, perspectives and reviews, dissecting the stress alleviation action of different plant stress mitigators on crops grown under optimal and sub-optimal growing conditions (abiotic and biotic stresses).
As a college student, Werner Maas took a course in genetics in 1941 and wondered why so little was said about the biochemical action of genes in controlling the specific function of an organism. Just at that time, biochemists and geneticists began to investigate jointly the basis of gene action, especially in microorganisms. Thus, Maas was able to witness firsthand the spectacular developments that led in the next twenty-five years to a clear picture of the action of genes. The history of these remarkable discoveries is the core of this book. After 1965, building on insights gained from the work with microorganisms, studies of gene action turned to animals and plants and concentrated on processes not present in microorganisms, such as embryonic development, the role of genes in diseases, and the function of the nervous system. Because of the rapidity of technical advances made in handling genes, it has been possible to learn much about these complex processes. The last part of the book deals with these developments, which are ongoing parts of the history of gene action.
Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g., ethyl methane sulphonate) have been widely used to induce mutations."
When the late Professor C. D. Darlington founded what developed into the International Chromosome Conferences in Oxford in 1964, he was concerned that scientists who worked on different aspects of chromosomes, or who studied them in different ways, should have the opportunity of "discussing the fundamental problems of chromosomes with one another". The fact that well over 300 scientists with a wide variety of interests came to Edinburgh in August 1992 for the 11th International Chromosome Conference shows that there is still the same need, and also the desire among chromosomologists to have such discussions. The present volume contains almost all the invited contributions, and attests to the diversity of approaches and applications in chromosomal studies. A few years ago it may have seemed to some that chromosome studies were being superseded by molecular biology, but the molecular biologists have now realized that they need to know about chromosomes, and indeed an important, if ill-defined discipline of 'molecular cytogenetics' has grown up in recent years. We are pleased that in planning the Conference and this book, so much of the work presented is at the interface between cytogenetics and molecular biology. This will surely continue in the future, as boundaries between disciplines are largely artificial, and each has much to learn from the others.
The role of RNA in regulating gene expression has become a topic of intense interest. In this book, internationally recognized experts in RNA research explore and discuss the methods whereby RNA can regulate gene expression with examples in yeast, Drosophila, mammals, and viral infection, as well as highlight the application of this knowledge in therapeutics and research. Topics include: gene silencing and gene activation, the hammerhead ribozyme, epigenetic regulation, RNAi, microRNA, and pyknons. This comprehensive publication is intended for readers with teaching or research interests in RNA, the regulation of gene expression, genetics, genomics, and molecular biology.
A comprehensive collection of readily reproducible techniques for the manipulation of recombinant plasmids using the bacterial host E. coli. The authors describe proven methods for cloning DNA into plasmid vectors, transforming plasmids into E. coli, and analyzing recombinant clones. They also include protocols for the construction and screening of libraries, as well as specific techniques for specialized cloning vehicles, such as cosmids, bacterial artificial chromosomes, l vectors, and phagemids. Common downstream applications such as mutagenesis of plasmids, recombinant protein expression, and the use of reporter genes, are also described.
This handbook was designed as a reference tool for forest geneticists, tree breeders and other tree improvement personnel, as well as a textbook for university courses and short-courses at the graduate level in quantitative genetics. The chapters focus on the decision points faced by quantitative geneticists and breeders in designing programs and analyzing data. Beginning with a justification for the use of quantitative genetics in decision making in tree improvement programs, the book continues with a brief presentation of fundamental principles, followed by discussions and evaluations of mating designs and field test designs, the use of best linear predictors to estimate breeding values, the use of computer programs in the analysis of variance for genetic information, the deployment of genetically improved stock for capturing gains, the use of economic models for program justification, and the development of seed transfer guidelines.
For scientists, no event better represents the contest between form and function as the chief organizing principle of life as the debate between Georges Cuvier and Etienne Geoffroy Saint-Hilaire. This book presents the first comprehensive study of the celebrated French scientific controversy that focused the attention of naturalists in the first decades of the nineteenth century on the conflicting claims of teleology, morphology, and evolution, which ultimately contributed to the making of Darwin's theory. This history describes not only the scientific dimensions of the controversy and its impact on individuals and institutions, but also examines the meaning of the debate for culture and society in the years before Darwin.
In 1992, a group of scientists including molecular biologists, microbiologists, population biolo gists, ecologists, human geneticists, moral philosophers and others met discussing the state of affairs regarding the deliberate or unintentional release of genetically modified organisms. The proceedings of this meeting were subsequently published by Birkhauser Verlag as Transgenic Organisms: Risk Assessment of Deliberate Release (K. Wohrmann and J. Tomiuk). Since then we have gained many new insights that are also worthy of discussion. And although other equally important scientific views on the release of genetically modified organisms exist, we have mainly concentrated on aspects of population biology and evolution. The results of a second meeting in 1995 are summarized here. We are grateful to colleagues and friends for their help in the translation, correction and review of the authors' contributions. We especially want to thank Jutta Bachmann, Donna Devine, Diana von Finck, Friedrich Laplace, Volker Loeschcke, Rolf Lorenz, Dave Parker and Trevor Petney. A grant (BMFT N' 0311035) from the Ministerium fUr Forschung und Technologie der Bundesrepublik Deutschland again made possible the continuation of this cooperative endeavour."
Bioinformatics is a relatively new field of research. It evolved from the requirement to process, characterize, and apply the information being produced by DNA sequencing technology. The production of DNA sequence data continues to grow exponentially. At the same time, improved bioinformatics such as faster DNA sequence search methods have been combined with increasingly powerful computer systems to process this information. Methods are being developed for the ever more detailed quantification of gene expression, providing an insight into the function of the newly discovered genes, while molecular genetic tools provide a link between these genes and heritable traits. Genetic tests are now available to determine the likelihood of suffering specific ailments and can predict how plant cultivars may respond to the environment. The steps in the translation of the genetic blueprint to the observed phenotype is being increasingly understood through proteome, metabolome and phenome analysis, all underpinned by advances in bioinformatics. Bioinformatics is becoming increasingly central to the study of biology, and a day at a computer can often save a year or more in the laboratory. The volume is intended for graduate-level biology students as well as researchers who wish to gain a better understanding of applied bioinformatics and who wish to use bioinformatics technologies to assist in their research. The volume would also be of value to bioinformatics developers, particularly those from a computing background, who would like to understand the application of computational tools for biological research. Each chapter would include a comprehensive introduction giving an overview of the fundamentals, aimed at introducing graduate students and researchers from diverse backgrounds to the field and bring them up-to-date on the current state of knowledge. To accommodate the broad range of topics in applied bioinformatics, chapters have been grouped into themes: gene and genome analysis, molecular genetic analysis, gene expression analysis, protein and proteome analysis, metabolome analysis, phenome data analysis, literature mining and bioinformatics tool development. Each chapter and theme provides an introduction to the biology behind the data describes the requirements for data processing and details some of the methods applied to the data to enhance biological understanding.
Simian virus 40 gained notoriety in the 1960s because it was found to be a contaminant of polio and adenovirus vaccines that had been administered to millions of healthy individuals worldwide. The public health implications of this revelation provided the initial impetus for an in-depth study of SV40 biology. Later work showed that SV40 DNA sequences as well as infectious virus are in fact found in human tumors and may have contributed to oncog- esis. It also turned out that SV40 uses mostly cellular machinery to carry out many steps in viral infection, which makes it a powerful probe for examining many fundamental questions in eukaryotic molecular biology. SV40 Pro- cols consolidates a number of well-tested step-by-step techniques in one v- ume; experts with hands-on experience in particular methods give detailed accounts of their optimized experimental protocols, so that the beginner, as well as more experienced researchers, may readily overcome problems of ambiguity often present in the literature. As with other DNA tumor viruses, the response of cultured cells to SV40 infection depends upon the species being infected. Monkey cells s- port virus production, which leads to their death, whereas rodent cells p- duce only the early proteins and acquire a transformed phenotype. Thus, SV40 Protocols is organized in two sections. The first relates to assays of the lytic cycle of the virus, and the second deals with transformation.
Emergent Computation emphasizes the interrelationship of the different classes of languages studied in mathematical linguistics (regular, context-free, context-sensitive, and type 0) with aspects to the biochemistry of DNA, RNA, and proteins. In addition, aspects of sequential machines such as parity checking and semi-groups are extended to the study of the Biochemistry of DNA, RNA, and proteins. Mention is also made of the relationship of algebraic topology, knot theory, complex fields, quaternions, and universal turing machines and the biochemistry of DNA, RNA, and proteins. Emergent Computation tries to avoid an emphasis upon mathematical abstraction ("elegance") at the expense of ignoring scientific facts known to Biochemists. Emergent Computation is based entirely upon papers published by scientists in well-known and respected professional journals. These papers are based upon current research. A few examples of what is not ignored to gain "elegance": - DNA exists as triple and quadruple strands - Watson-Crick complementary bases have mismatches - There can be more than four bases in DNA - There are more than sixty-four codons - There may be more that twenty amino acids in proteins While Emergent Computation emphasizes bioinformatics applications, the last chapter studies mathematical linguistics applied to areas such as languages found in birds, insects, medical applications, anthropology, etc. Emergent Computation tries to avoid unnecessary mathematical abstraction while still being rigorous. The demands made upon the knowledge of chemistry or mathematics is minimized as well. The collected technical references are valuable in itself for additional reading.
This book contains complete information on Capsicum genetic resources, diversity, evolution, history and advances in capsicum improvement from classical breeding to whole genome sequencing, genomics, databases and its impact on next generation pepper breeding. Capsicum is one of the most important Solanaceae crops grown worldwide as vegetables and spices. Due to its high economic value and to meet the demands of enormous population growth amid biotic and abiotic stresses, there has been an ongoing breeding program utilizing available genetic resources with desired traits to increase the sustainable productivity of this crop for several decades. However, the precision breeding of this crop for desired traits only started with the advent of molecular markers. The recent advances in high-throughput genome sequencing technologies helped in the quick decoding of transcriptome, epigenome, nuclear and organeller genomes, thereby enhancing our understanding of the structure and function of the Capsicum genome, and helping in genomics assisted breeding. These advanced technologies coupled with conventional mapping have greatly contributed towards dissection and manipulation of economically important traits more precisely and made less time consuming.
This new volume reviews current progress on different approaches of in vivo reprogramming technology. Leaders in the field discuss how in vivo cell lineage reprogramming can be used for tissue repair and regeneration in different organs, including brain, spinal cord, pancreas, liver and heart. Recent studies on in vivo cell reprogramming towards pluripotency are reviewed; examples are given to show its potential in regenerative medicine. In each chapter, the regenerative potential of different in vivo reprogramming approaches is discussed in detail. More specifically, how different tissue failures or damages can be treated with this technology is explained. Examples from various animal models are given and the regenerative potential of in vivo reprogramming is compared to that of cell transplantation studies. The last chapter discusses current challenges of these preclinical studies and gives suggestions in order to improve the current strategies. Future directions are indicated for the transition of in vivo reprogramming technology to clinical settings. This is among the first books in the literature which specifically focuses on the in vivo reprogramming technology in regenerative medicine and these chapters collectively cover one of the most important and exciting topics of regenerative medicine.
The complement system, first described more than a century ago, was for many years the ugly duckling of the immunology world, but no more. Complement in recent years has blossomed into a fascinating and fast moving field of immediate relevance to clinical scientists in fields as diverse as transplantation biology, virology, and inflammation. Despite its emergence from the shadows, complement retains an unwarranted reputation for being "difficult." This impression derives in large part from the superficially complicated nomenclature, a relic of the long and tortuous process of unraveling the system, of naming components in order of discovery rather than in a syst- atic manner. Once the barrier of nomenclature has been surmounted, then the true simplicity of the system becomes apparent. Complement comprises an activation system and a cytolytic system. The former has diverged to focus on complement to distinct targets-bacteria, - mune complexes, and others-so that texts now describe three activation pa- ways, closely related to one another, but each with some unique features. The cytolytic pathway is the same regardless of the activation process and kills cells by creating pores in the membrane. Complement plays an important role in killing bacteria and is essential for the proper handling of immune complexes. Problems occur when complement is activated in an inappropriate manner-the potent inflammation-inducing products of the cascade then cause unwanted tissue damage and destruction.
Timing, racing, combating, struggling and targeting are some actions through which cellular fate could be reflected and evaluated. Interaction between cell territory and environment occur during pre-embryonic, fetal development, and post-natal periods. What the researchers observe as the outcome of telomeres behavior is only the peak of an ice mountain within a stormy ocean. Cellular life depends on programmed behavior of telomeres, capable to surprise the cells. Telomeres provide an introduction to the history of our cells which govern the quality of life and status of health. Telomeres as the cooperative territory are capable of stabilizing the chromosomal territory. The status of telomeres reflects the key information, announcing the real age of individuals, and may be a valuable marker for prognosis and predicting cancer. Telomere territory is characterized with a multi-disciplinary manner. Therefore, this book is aimed to offer a wide range of chapters, hoping to be useful for diverse audiences, including hematologists-oncologists, radiotherapists, surgeons, cancer researchers, and all the sectors who affect the macro- and micro- environmental domains. Finally, telomeres are sensitive, cooperative, and trustable targets. It is worth to state that 'telomeres are messengers of NATURE', let's to know them as they are.
Kary Mullis was awarded a Nobel Prize for inventing the PCR technique more than 15 years ago in 1993. Since its "discovery," multiple adaptations and variations of the standard PCR technique have been described, with many of these adaptations and variations currently being used in clinical, diagnostic and academic laboratories across the world. Further, these techniques are being applied at the diagnostic level (e.g. as high throughput testing methodologies to detect minimum residual disease, the presence/absence of specific pathogens etc), as well as to increase our understanding of fundamental disease processes. Frequently, PCR technicians and specialists limit their understanding of PCR to one particular methodology. However, this approach limits their appreciation of the range of versatile PCR techniques currently available, techniques that may be applicable and indeed more suitable to their own laboratory situation. This manual aims to provide the reader with a guide to the standard PCR technique and its many available modifications, with particular emphasis on the role of PCR techniques in the diagnostic laboratory (the central theme of this manual). Further, many important technical issues have been addressed, including types of PCR template material, PCR optimization, the analysis of PCR products, quality control and quality assurance, variants and adaptations of the standard PCR protocol, quantitative PCR and in situ PCR. The reader of this manual will be excellently informed about the fundamental principles of PCR and the true potential of PCR within clinical laboratory practice.
Award-winning researchers review of key aspects of DNA repair in a wide variety of organisms, including all-important model systems. The book focuses on DNA damage and repair in prokaryotic and model eukaryotic systems, emphasizing the significant progress that has been made in the past five years. Each chapter has undergone a rigorous peer-review cycle to ensure definitive and comprehensive treatment. Major topics include UV and X-Ray repair, repair of chemical damage, recombinational repair, mismatch repair, transcription-repair coupling, and the role of DNA repair in cell cycle regulation.
Forensic Genetic Approaches for Identification of Human Skeletal Remains: Challenges, Best Practices, and Emerging Technologies provides best practices on processing bone samples for DNA testing. The book outlines forensic genetics tools that are available for the identification of skeletal remains in contemporary casework and historical/archaeological investigations. Although the book focuses primarily on the use of DNA for direct identification or kinship analyses, it also highlights complementary disciplines often used in concert with genetic data to make positive identifications, such as forensic anthropology, forensic odontology, and forensic art/sculpting. Unidentified human remains are often associated with tragic events, such as fires, terrorist attacks, natural disasters, war conflicts, genocide, airline crashes, homicide, and human rights violations under oppressive totalitarian regimes. In these situations, extensive damage to soft tissues often precludes the use of such biological samples in the identification process. In contrast, bone material is the most resilient, viable sample type for DNA testing. DNA recovered from bone often is degraded and in low quantities due to the effects of human decomposition, environmental exposure, and the passage of time. The complexities of bone microstructure and its rigid nature make skeletal remains one of the most challenging sample types for DNA testing.
Building on a range of disciplines - from biology and anthropology to philosophy and linguistics - this book draws on the expertise of leading names in the study of organic, mental and cultural codes brought together by the emerging discipline of biosemiotics. The book's 18 chapters present a range of experimental evidence which suggests that the genetic code was only the first in a long series of organic codes, and that it has been the appearance of new codes - organic, mental and cultural - that paved the way for the major transitions in the history of life. While the existence of many organic codes has been proposed since the 1980s, this volume represents the first multi-authored attempt to deal with the range of codes relevant to life, and to reveal the ubiquitous role of coding mechanisms in both organic and mental evolution. This creates the conditions for a synthesis of biology and linguistics that finally overcomes the old divide between nature and culture.
The field of the excitatory amino acids was born when L-glutamate and L-aspartate were found to be potent convulsants (Hayashi, 1954), and were subsequently found to excite neurons directly (Curtis, Phillis, and Watkins, 1959). Although these studies initiated the hypothesis of glutamate-mediated neurotransmission, it was noted that the ubiquitous actions of glutamate could also reflect a general, nonspecific property of glutamate on neuronal mem branes. It was not until 20 years later that pharmacological, physiological, and biochemical studies provided convincing evidence for a neurotransmitter role for glutamate in the mammalian central nervous system (CNS). With the critical demonstration that the pharmacologically defined glutamate receptors mediate synaptic currents, glutamate rapidly became widely accepted as a majorneurotransmitter by the mid-1980s. This breakthrough, together with the simultaneous findings that glutamate receptors are involved in many essential, as well as pathological, processes in the CNS, instantly transformed the study of glutamate receptors into one of the fastest-growing and most exciting areas of neuroscience. With the cloning of numerous ionotropic glutamate receptor subunits over the last six years, the field has experienced another dramatic acceleration in the understanding of receptor action and in providing the first clear insights into the molecular bases underlying the wealth of pharmacological and physiological data on these receptors."
Reporter genes have played, and continue to play, a vital role in many areas of biological research by providing a ready means for qualitative and quantitative assessment of the activity of genes and location of gene products in different environments. This book describes practical protocols for experimentation with the most useful reporter genes for mammalian systems that are available.
Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC "revolution" has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a Bayesian perspective. An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments. Daniel Sorensen is Research Leader in Biometrical Genetics, at the Department of Animal Breeding and Genetics in the Danish Institute of Agricultural Sciences. Daniel Gianola is Professor in the Animal Sciences, Biostatistics and Medical Informatics, and Dairy Science Departments of the University of Wisconsin-Madison. Gianola and Sorensen pioneered the introduction of Bayesian and MCMC methods in animal breeding. The authors have published and lectured extensively in applications of statistics to quantitative genetics.
The field of epigenetics has gained great momentum in recent years and is now a rapidly advancing field of biological and medical research. Epigenetic changes play a key role in normal development as well as in disease. The editor of this book has assembled top-quality scientists from diverse fields of epigenetics to produce a major new volume on current epigenetics research. In this book the molecular mechanisms and biological processes in which epigenetic modifications play a primordial role are described in detail. The first seven chapters describe the different biological mechanisms of the epigenetic machinery including: DNA methylation, histone tails, chromatin structure, nucleosome occupancy, Polycomb group proteins, siRNAs and miRNAs. The following chapters cover the epigenetic systems of plants, the epigenetic profile of embryonic stem cells, cell differentiation, imprinting marks, and random X chromosome inactivation. Further chapters deal with epigenetics in relation to cancers, premature aging, longevity and the developmental origins of disease. The final chapter, describes the fascinating potential transfer of epigenetic information across generations. This up-to-date volume is a major resource for those working in the field and will stimulate readers of all levels to dive into the fascinating and fast moving field of epigenetics. |
You may like...
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Nonoscillation Theory of Functional…
Ravi P. Agarwal, Leonid Berezansky, …
Hardcover
R2,745
Discovery Miles 27 450
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
R4,574
Discovery Miles 45 740
The BRICS In Africa - Promoting…
Funeka Y. April, Modimowabarwa Kanyane, …
Paperback
|