![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation > General
This book is devoted to grain legumes and include eight chapters devoted to the breeding of specific grain legume crops and five general chapters dealing with important topics which are common to most of the species in focus. Soybean is not included in the book as it is commonly considered an oil crop more than a grain legume and is included in the Oil Crops Volume of the Handbook of Plant Breeding. Legume species belong to the Fabaceae family and are characterized by their fruit, usually called pod. Several species of this family were domesticated by humans, such as soybean, common bean, faba bean, pea, chickpea, lentil, peanut, or cowpea. Some of these species are of great relevance as human and animal food. Food legumes are consumed either by their immature pod or their dry seeds, which have a high protein content. Globally, grain legumes are the most relevant source of plant protein, especially in many countries of Africa and Latin America, but there are some constraints in their production, such as a poor adaptation, pest and diseases and unstable yield. Current research trends in Legumes are focused on new methodologies involving genetic and omic studies, as well as new approaches to the genetic improvement of these species, including the relationships with their symbiotic rhizobia.
This important 2-volume reference book is the first comprehensive resource reflecting the current global status and prospects of date palm cultivation by country. This volume covers Africa and the Americas. Countries included are: Egypt, Algeria, Sudan, Tunisia, Libya, Morocco, Mauritania, Niger, Cameroon, Djibouti, Chad, Mali Somalia, Ethiopia, Burkina Faso and Senegal, as well as the United States of America and the South American countries Chile and Peru. Topics discussed are: cultivation practices; genetic resources and breeding; conservation and germplasm banks; cultivar classification and identification based on morphological and molecular markers; micropropagation and progress toward scale-up production; and advances in dates processing and marketing. Chapters are supported by tables and color photographs. Appendixes summarize traits and distribution of major cultivars, commercial resources of offshoots and in vitro plants; and institutions and scientific societies concerned with date palm.
This proceeding covers all the collected research data and presentations from the 8th International Symposium on the Molecular Breeding of Forage and Turf. The book explores themes in molecular breeding of forage and turf, including abiotic and biotic stresses, bioenergy and biorenewables, comparative genomics, emerging tools for forage and turf research, functional genetics and genomics and genetic mapping germplasm, diversity and its impact on breeding, herbage quality, plant-microbe interactions and transgenic and risk assessment. Written by renowned researchers in plant genomics, Molecular Breeding of Forage and Turf: The Proceedings of the 8th International Symposium on the Molecular Breeding of Forage and Turf is a valuable resource for researchers and students in the field of plant genomics.
This book describes the various applications of microorganisms in improving plant growth, health and the efficiency of phytochemical production. The chapters trace topics such as the role of PGPRs in improving salt stress and heavy metal tolerance in plants; the prevention and control of plant diseases; boosting soil fertility and agriculture productivity; the induction of secondary metabolite biosynthesis in medicinal and aromatic plants; the enhancement of phytochemical levels, and the action mechanisms, diversity and characterization of PGPRs. The reviews will be of interest for scientists in the fields of agriculture, microbiology, soil biology, plant breeding and herbal medicinal products.
This book presents a holistic view of the complex and dynamic responses of plants to nanoparticles, the signal transduction mechanisms involved, and the regulation of gene expression. Further, it addresses the phytosynthesis of nanoparticles, the role of nanoparticles in the antioxidant systems of plants and agriculture, the beneficial and harmful effects of nanoparticles on plants, and the application of nanoparticles and nanotubes to mass spectrometry, aiming ultimately at an analysis of the metabolomics of plants. The growing numbers of inventions in the field of nanotechnology are producing novel applications in the fields of biotechnology and agriculture. Nanoparticles have received much attention because of the unique physico-chemical properties of these compounds. In the life sciences, nanoparticles are used as “smart” delivery systems, prompting the Nobel Prize winner P. Ehrlich to refer to these compounds as “magic bullets.” Nanoparticles also play an important role in agriculture as compound fertilizers and nano-pesticides, acting as chemical delivery agents that target molecules to specific cellular organelles in plants. The influence of nanoparticles on plant growth and development, however, remains to be investigated. Lastly, this book reveals the research gaps that must be bridged in the years to come in order to achieve larger goals concerning the applications of nanotechnology in the plants sciences. In the 21st century, nanotechnology has become a rapidly emerging branch of science. In the world of physical sciences, nanotechnological tools have been exploited for a broad range of applications. In recent years, nanoparticles have also proven useful in several branches of the life sciences. In particular, nanotechnology has been employed in drug delivery and related applications in medicine.
This book represents a pioneer initiative to describe the new technologies available for next-generation phenotyping and applied to plant breeding. Over the last several years plant breeding has experienced a true revolution. Phenomics, i.e., high-throughput phenotyping using automation, robotics and remote data collection, is changing the way cultivars are developed. Written in an easy to understand style, this book offers an indispensable reference work for all students, instructors and scientists who are interested in the latest innovative technologies applied to plant breeding.
This book describes how genomics has revolutionized our understanding of agriculturally important plant-associated fungi and oomycetes. It illustrates some fundamental discoveries about these eukaryotic microbes with regard to the overall structure of their genomes, their lifestyles and the molecular mechanisms that form the basis of their interactions with plants. Genomics has provided new insights into fungal lifestyles and led to practical advances in plant breeding and crop protection, such as predictions about the spread and evolution of new pathogens.This volume focuses on fungi and oomycetes that are typical dicot plant pathogens and includes: Sclerotinia sclerotiorum, Botrytis cinerea, Alternaria sp.,Verticillium alfalfae and Verticillium dahliae, Fusarium oxysporum, Phytophthora capsici, Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans, Hyaloperonospora arabidopsidis.
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, Future Challenges in Crop Protection Against Fungal Pathogens is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example, on the world’s protein production.
Plastids are the sites of conversion of solar energy into the chemical energy usable to sustain life. They are also responsible for the production of the vast majority of the oxygen in the atmosphere. Through these activities they play a unique role in the biosphere, producing two critical products upon which life on Earth depends. It covers in 21 chapters nearly all actively investigated areas of plastid biology, from biosynthesis to function to their uses in biotechnology. The editors have compiled an extensive list of international experts from whom to solicit chapters. As is evident from the suggested Table of Contents, the book will start with a discussion of genetic material and its expression, followed by differentiation and development of different plastid types and internal organization. This is followed by an in depth look at biogenesis and assembly of plastid proteins and protein complexes and then by the important metabolic functions in plastids. The book will end with two chapters discussing the role of plastid biology in protein expression biotechnology and in hydrogen and biofuel production.
A proper understanding of the structural organization of the plant body is essential to any study in plant biology. Experimental studies in vivo and in situ will lead to structural, physiological, and cellular changes of the experimental material. To study macroscopic and microscopic changes, different histological methods and microtechniques can be used as they provide valuable information of the experimental system. In addition, the observed structural changes allow investigators to set hypothesis for further studies based on one's own observation. Thus, proper selection and utilization of microtechniques are a must for the success of a research program. At present, an up-to-date collection of protocols are not readily available in the literature. The latest work in plant microtechniques was published in 1999 by Ruzin but many others are no longer in print [e.g., Jensen (1964); O'Brien and McCully (1981)]. Furthermore, a majority of published works focus on techniques related to general processing and staining procedures. A comprehensive treatment that encompasses broader applications of microtechniques to other disciplines is lacking [e.g., archeology, wood science, etc.]. There is a need to create a comprehensive volume of botanical methods and protocols which includes traditional and novel techniques that can be used by researchers in plant science and investigators in other disciplines that require plant microtechniques in their research and teaching. This book covers a wide variety of applications and brings them up-to-date to make them understandable and relevant, especially to students using the methods for the first time. It is our intention to create a useful reference for plant histology and related methods that will serve as a foundation for plant scholars, researchers, and teachers in the plant sciences.
The genome is more than a linear code as depicted by its DNA sequences as several interacting factors play a crucial role in shaping its organization and function. The complete sequences of a number of plant genomes and the recent advances of high-throughput technologies has fueled research efforts in the field of Plant Nuclear Biology unveiling numerous insights about the mechanisms underlying genome regulation. Genomic information is being integrated into molecular- and cellular-level mechanisms of the plant processes. A host of nuclear processes underlie key developmental processes as well as biotic and abiotic interactions. Non-coding RNAs have been increasingly recognized as players in gene expression and genome defense and integrity. However, in vivo, genomes exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. Various types of subcellular structure have been identified in the nucleus, which are associated with transcription factors, RNA processing proteins and epigenetic regulators. Interestingly, these nuclear bodies display different behaviors in response to the environment. This book compiles a series of landmark discussions of the recent advances in plant nuclear biology research focusing in the functional relevance of the arrangement of genomes and nuclear processes that impact plant physiology and development.
This book provides an overview of the latest advancements in the field of alien introgression in wheat. The discovery and wide application of molecular genetic techniques including molecular markers, in situ hybridization, and genomics has led to a surge in interspecific and intergeneric hybridization in recent decades. The work begins with the taxonomy of cereals, especially of those species which are potential gene sources for wheat improvement. The text then goes on to cover the origin of wheat, breeding in connection with alien introgressions, and the problems of producing intergeneric hybrids and backcross derivatives. These problems can include crossability, sterility, and unequal chromosome transmission. The work then covers alien introgressions according to the related species used, as well as new results in the field of genomics of wild wheat relatives and introgressions.
Use of Microbes for the Alleviation of Soil Stresses, Volume 1 describes the most important details and advances related to the alleviation of soil stresses by soil microbes. Comprised of seven chapters, the book reviews the mechanisms by which plant growth promoting rhizobacteria (PGPR) alleviate plant growth under stress; the role of mycorrhizal fungi on the alleviation of drought stress in host plants; how PGPR may alleviate salinity stress on the growth of host plants; and the role of PGPR on the growth of the host plant under the stress of sub optimal root zone temperature. Written by experts in their respective fields, Use of Microbes for the Alleviation of Soil Stresses, Volume 1 is a comprehensive and valuable resource for researchers and students interested in the field of microbiology and soil stresses.
This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular and cellular biology, to genetic approaches, root biology and plant physiology. The contribution of arbuscular mycorrhizal fungi to alleviating aluminium toxicity is also discussed. Over 40% of total agricultural land resources are acidic in nature, with aluminium being the major toxicant. Plant roots are particularly susceptible to aluminium stress, but much of the complex mechanism underlying its toxicity and tolerance is unknown and aluminium stress perception in plants remains poorly understood. The diverse facets of aluminium stress adaptation covered in this book are relevant to plant biology students at all levels, as well researchers and it provides a valuable contribution to our understanding of plant adaptation to the changing environment.
Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book's structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.
Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.
This Soil Biology volume examines our current understanding of the mechanisms involved in the beneficial effects transferred to plants by endophytes such as rhizobial, actinorhizal, arbuscular mycorrhizal symbionts and yeasts. Topics presented include how symbiosis starts on the molecular level; chemical signaling in mycorrhizal symbiosis; genomic and functional diversity of endophytes; nitrogen fixation; nutrient uptake and cycling; as well as plant protection against various stress conditions. Further, the use of beneficial microorganisms as biopesticides is discussed, particularly the application of Plant Growth Promoter Rhizobacteria (PGPR) in agriculture with the aim to increase yields.
This book presents and summarizes the new thoughts, new methods and new achievements that have emerged in the biotechnology of lignocellulose in recent years. It proposes new concepts including the primary refining, fractionation, multi-level utilization and selective structural separation of lignocellulose, etc. By approaching lignocellulose as a multi-level resource, biotechnology could have a significant effect on ecological agriculture, bio-energy, the chemical and paper making industries, etc., ultimately establishing distinctive eco-industrial parks for lignocellulose. Additionally, this book provides systematic research methods for the biotechnology of lignocellulose including investigation methods for the primary refining of lignocellulose, for microbial degradation and enzymatic hydrolysis, for cellulose fermentation and for lignocellulose conversion processes. It offers an excellent reference work and guide for scientists engaging in research on lignocellulose. Dr. Hongzhang Chen is a Professor at the Institute of Process Engineering of the Chinese Academy of Sciences, Beijing, China.
The purpose of this book is to assess the potential effects of biotechnological approaches particularly genetic modification on biodiversity and the environment. All aspects of biodiversity such as ecological diversity, species diversity and genetic diversity are considered. Higher organisms contain a specific set of linear DNA molecules called chromosomes and a complete set of chromosomes in an organism comprises its genome. The collection of traits displayed by any organism (phenotype) depends on the genes present in its genome (genotype). The appearance of any specific trait also will depend on many other factors, including whether the gene(s) responsible for the trait is/are turned on (expressed) or off, the specific cells within which the genes are expressed and how the genes, their expression and the gene products interact with environmental factors. The primary biotechnology which concerns us is that of genetic manipulation, which has a direct impact on biodiversity at the genetic level. By these manipulations, novel genes or gene fragments can be introduced into organisms (creating transgenics) or existing genes within an organism can be altered. Transgenics are a major area of concern, combining genes from different species to effectively create novel organisms. Current rates of disappearance of biological and cultural diversity in the world are unprecedented. Intensive resource exploitation due to social and economic factors has led to the destruction, conversion or degradation of ecosystems. Reversing these trends requires time to time assessment to integrate conservation and development.
Successful reproduction is the basis not only for the stability of the species in their natural habitat but also for productivity of our crop plants. Therefore, knowledge on reproductive ecology of wild and cultivated plants is important for effective management of our dwindling biodiversity and for the sustainability and improvement of the yield in crop species. Conservation and management of our plant diversity is going to be a major challenge in the coming decades, particularly in the tropical countries which are rich in biodiversity. Reproductive failure is the main driver for pushing a large number of tropical species to vulnerable category. Available data on reproductive ecology on tropical species is very limited and there is an urgent need to initiate research on these lines. A major limitation for the beginners to take up research is the absence of simple concise work manuals that provide step-wise procedures to study all aspects of reproductive ecology. The Manual fills this void. Over 60 protocols described in the manual cover the whole spectrum of reproductive ecology - study sites and species, phenology, floral morphology and sexuality, pollen and pistil biology, pollination ecology, breeding system, seed biology, seed dispersal and seedling recruitment. Each chapter gives a concise conceptual account of the topic before describing the protocols. The Manual caters to researchers, teachers and students who are interested in any aspect of reproductive ecology of flowering plants -- botanists, ecologists, agri-horticulturists, foresters, entomologists, plant breeders and conservation biologists.
Biotechnology: Prospects and Applications covers the review of recent developments in biotechnology and international authorship presents global issues that help in our understanding of the role of biotechnology in solving important scientific and societal problems for the benefit of mankind and environment. A balanced coverage of basic molecular biology and practical applications, relevant examples, colored illustrations, and contemporary applications of biotechnology provide students and researchers with the tools and basic knowledge of biotechnology. In our effort to introduce students and researchers to cutting edge techniques and applications of biotechnology, we dedicated specific chapters to such emerging areas of biotechnology as Emerging Dynamics of Brassinosteroids Research, Third generation green energy, Bioremediation, Metal Organic Frameworks: New smart materials for biological application, Bioherbicides, Biosensors, Fetal Mesenchymal Stem Cells and Animal forensics. Biotechnology: Prospects and Applications will be highly useful for students, teachers and researchers in all disciplines of life sciences, agricultural sciences, medicine, and biotechnology in universities, research stations and biotechnology companies. The book features broader aspects of the role of biotechnology in human endeavor. It also presents an overview of prospects and applications while emphasizing modern, cutting-edge, and emerging areas of biotechnology. Further, it provides the readers with a comprehensive knowledge of topics in food and agricultural biotechnology, microbial biotechnology, environmental biotechnology and animal biotechnology. The chapters have been written with special reference to the latest developments in above broader areas of biotechnology that impact the biotechnology industry. A list of references at the end of each chapter is provided for the readers to learn more about a particular topic. Typically, these references include basic research, research papers, review articles and articles from the popular literature.
Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. Authors who have studied how agro ecosystems have changed during the first decade and a half of commercial deployment review effects and stress needs that must be considered to make these tools sustainable.
Laboratory Protocols in Fungal Biology presents the latest techniques in fungal biology. This book analyzes information derived through real experiments, and focuses on cutting edge techniques in the field. The book comprises 57 chapters contributed from internationally recognised scientists and researchers. Experts in the field have provided up-to-date protocols covering a range of frequently used methods in fungal biology. Almost all important methods available in the area of fungal biology viz. taxonomic keys in fungi; histopathological and microscopy techniques; proteomics methods; genomics methods; industrial applications and related techniques; and bioinformatics tools in fungi are covered and complied in one book. Chapters include introductions to their respective topics, list of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting. Each chapter is self-contained and written in a style that enables the reader to progress from elementary concepts to advanced research techniques. Laboratory Protocols in Fungal Biology is a valuable tool for both beginner research workers and experienced professionals. Coming Soon in the Fungal Biology series: Goyal, Manoharachary / Future Challenges in Crop Protection Against Fungal Pathogens Martin, Garcia-Estrada, Zeilinger / Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites Zeilinger, Martin, Garcia-Estrada / Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2 van den Berg, Maruthachalam / Genetic Transformation Systems in Fungi Schmoll, Dattenbock / Gene Expression Systems in Fungi Dahms / Advanced Microscopy in Mycology
Many exciting discoveries in recent decades have contributed new knowledge to our understanding of the mechanisms that regulate various stages of plant growth and development. Such information, coupled with advances in cell and molecular biology, is fundamental to crop improvement using biotechnological approaches. Two volumes constitute the present work. The ?rst, comprising 22 chapters, commences with introductions relating to gene regulatory models for plant dev- opment and crop improvement, particularly the use of Arabidopsis as a model plant. These chapters are followed by speci?c topics that focus on different developmental aspects associated with vegetative and reproductive phases of the life cycle of a plant. Six chapters discuss vegetative growth and development. Their contents consider topics such as shoot branching, bud dormancy and growth, the devel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plant development is in 14 chapters that present topics such as ?oral organ init- tion and the regulation of ?owering, the development of male and female gametes, pollen germination and tube growth, fertilization, fruit development and ripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibility are also discussed. |
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Designing Embedded Processors - A Low…
Joerg Henkel, Sri Parameswaran
Hardcover
R5,196
Discovery Miles 51 960
Artificial Intelligence Technologies and…
Tomayess Issa, Pedro Isaias
Hardcover
R6,178
Discovery Miles 61 780
5th International Conference on Geofoam…
David Arellano, Abdullah Tolga Oezer, …
Hardcover
UC/OS-III - The Real-Time Kernel and the…
Jean J. Labrosse, Juan P. Benavides, …
Hardcover
R2,385
Discovery Miles 23 850
The Fourth Industrial Revolution…
Allam Hamdan, Aboul Ella Hassanien, …
Hardcover
R5,174
Discovery Miles 51 740
|