![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation > General
"Cereal Genomics" published in 2004 served the purpose of collecting all information on cereal genomics at one place and was well received by the cereal workers through-out the world. The last eight years have witnessed significant advancement in the field of cereal genomics. For instance, high-density genetic maps, physical maps, QTL maps and even draft genome sequence have become available for several cereal species. Furthermore, the next generation sequencing (NGS) technologies have revolutionized genomics research, so that it is possible now to sequence genomes of hundreds or thousands of accessions of an individual cereal crop. Significant amounts of data generated using these NGS technologies created a demand for computational tools to analyse this massive data. In view of these developments, the Editors realised that there was a need to have an updated volume on the present status and future prospects of cereal genomics. These developments related to technology and the tools have been documented in this volume, thus supplementing our earlier edited volume "Cereal Genomics". "Cereal Genomics II" discusses advances in cereal genomics research made during the last eight years, and presents state-of-art cereal genomics and its utilization involving both basic research such as comparative genomics and functional genomics, and applied research like QTL mapping and molecular breeding.
This Soil Biology volume examines our current understanding of the mechanisms involved in the beneficial effects transferred to plants by endophytes such as rhizobial, actinorhizal, arbuscular mycorrhizal symbionts and yeasts. Topics presented include how symbiosis starts on the molecular level; chemical signaling in mycorrhizal symbiosis; genomic and functional diversity of endophytes; nitrogen fixation; nutrient uptake and cycling; as well as plant protection against various stress conditions. Further, the use of beneficial microorganisms as biopesticides is discussed, particularly the application of Plant Growth Promoter Rhizobacteria (PGPR) in agriculture with the aim to increase yields.
Biotechnology: Prospects and Applications covers the review of recent developments in biotechnology and international authorship presents global issues that help in our understanding of the role of biotechnology in solving important scientific and societal problems for the benefit of mankind and environment. A balanced coverage of basic molecular biology and practical applications, relevant examples, colored illustrations, and contemporary applications of biotechnology provide students and researchers with the tools and basic knowledge of biotechnology. In our effort to introduce students and researchers to cutting edge techniques and applications of biotechnology, we dedicated specific chapters to such emerging areas of biotechnology as Emerging Dynamics of Brassinosteroids Research, Third generation green energy, Bioremediation, Metal Organic Frameworks: New smart materials for biological application, Bioherbicides, Biosensors, Fetal Mesenchymal Stem Cells and Animal forensics. Biotechnology: Prospects and Applications will be highly useful for students, teachers and researchers in all disciplines of life sciences, agricultural sciences, medicine, and biotechnology in universities, research stations and biotechnology companies. The book features broader aspects of the role of biotechnology in human endeavor. It also presents an overview of prospects and applications while emphasizing modern, cutting-edge, and emerging areas of biotechnology. Further, it provides the readers with a comprehensive knowledge of topics in food and agricultural biotechnology, microbial biotechnology, environmental biotechnology and animal biotechnology. The chapters have been written with special reference to the latest developments in above broader areas of biotechnology that impact the biotechnology industry. A list of references at the end of each chapter is provided for the readers to learn more about a particular topic. Typically, these references include basic research, research papers, review articles and articles from the popular literature.
This book presents and summarizes the new thoughts, new methods and new achievements that have emerged in the biotechnology of lignocellulose in recent years. It proposes new concepts including the primary refining, fractionation, multi-level utilization and selective structural separation of lignocellulose, etc. By approaching lignocellulose as a multi-level resource, biotechnology could have a significant effect on ecological agriculture, bio-energy, the chemical and paper making industries, etc., ultimately establishing distinctive eco-industrial parks for lignocellulose. Additionally, this book provides systematic research methods for the biotechnology of lignocellulose including investigation methods for the primary refining of lignocellulose, for microbial degradation and enzymatic hydrolysis, for cellulose fermentation and for lignocellulose conversion processes. It offers an excellent reference work and guide for scientists engaging in research on lignocellulose. Dr. Hongzhang Chen is a Professor at the Institute of Process Engineering of the Chinese Academy of Sciences, Beijing, China.
Proceedings of a Seminar in the CEC Programme of the Coordination of Research on Plant Protein Improvement, held in Gembloux, Belgium, Sept. 3-5, 1985
Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-CellInteractionandRelevancetoSEinSuspension Cultures ...18 vii viii Contents 1. 10 DevelopmentProgramAfterSEInduction ...19 1. 11 ConcludingRemarksandaModelBasedonStudiesin Medicagotruncatula ...19 1. 12 SEandBiotechnology ...20 References ...21 2 MicrosporeEmbryogenesis ...27 A. Olmedilla 2. 1 Introduction ...27 2. 2 DiscoveryoftheProductionofHaploidsbyAntherCulture ...29 2. 3 StrategiesfortheInductionofMicrosporeEmbryogenesis ...29 2. 4 In?uenceofDifferentFactorsinMicrosporeEmbryogenesis ...30 2. 4. 1 Genotype ...30 2. 4. 2 DonorPlantPhysiology ...31 2. 4. 3 StageofPollenDevelopment ...
This book provides comprehensive information on the latest tools and techniques of molecular genetics and their applications in crop improvement. It thoroughly discusses advanced techniques used in molecular markers, QTL mapping, marker-assisted breeding, and molecular cytogenetics.
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. Bacteria in Agrobiology: Crop Ecosystems describes the beneficial role of plant growth promoting bacteria with special emphasis on oil yielding crops, cereals, fruits and vegetables. Chapters present studies on various aspects of bacteria-plant interactions, soil-borne and seed-borne diseases associated with food crops such as rice, sesame, peanuts, and horticultural crops. Further reviews describe technologies to produce inoculants, the biocontrol of post harvest pathogens as a suitable alternative to agrochemicals, and the restoration of degraded soils.
The entire range of the developmental processes in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around them. Out of the recognized hormones, attention has largely been focused on five - Auxins, Gibberellins, Cytokinin, Abscisic acid and Ethylene. However, the information about the most recent group of phytohormone (Brassinosteroids) has been incorporated in this book. This volume includes a selection of newly written, integrated, illustrated reviews describing our knowledge of Brassinosteroids and aims to describe them at the present time. Various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant developments are possible. This book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.
Development of transgenic crop plants, their utilization for improved agriculture, health, ecology and environment and their socio-political impacts are currently important fields in education, research and industries and also of interest to policy makers, social activists and regulatory and funding agencies. This work prepared with a class-room approach on this multidisciplinary subject will fill an existing gap and meet the requirements of such a broad section of readers. Volume 2 with 13 chapters contributed by 41 eminent scientists from nine countries deliberates on the utilization of transgenic crops for resistance to herbicides, biotic stress and abiotic stress, manipulation of developmental traits, production of biofuel, biopharmaceuticals and algal bioproducts, amelioration of ecology and environment and fostering functional genomics as well as on regulations and steps for commercialization, patent and IPR issues, and compliance to concerns and compulsions of utilizing transgenic plants.
The improvement of crop species has been a basic pursuit since cultivation began thousands of years ago. To feed an ever increasing world population will require a great increase in food production. Wheat, corn, rice, potato and few others are expected to lead as the most important crops in the world. Enormous efforts are made all over the world to document as well as use these resources. Everybody knows that the introgression of genes in wheat provided the foundation for the "Green Revolution". Later also demonstrated the great impact that genetic resources have on production. Several factors are contributing to high plant performance under different environmental conditions, therefore an effective and complementary use of all available technological tools and resources is needed to meet the challenge.
Molecular farming in plants is a relatively young subject of sciences. As plants can offer an inexpensive and convenient platform for the large-scale production of recombinant proteins with various functions, the driven force from the giant market for recombinant protein pharmaceuticals and industrial enzymes makes this subject grow and advance very quickly. To summarize recent advances, current challenges and future directions in molecular farming, international authorities were invited to write this book for researchers, teachers and students who are interested in this subject. This book, with the focus on the most advanced cutting-edge breakthroughs, covers all the essential aspects of the field of molecular farming in plants: from expression technologies to downstream processing, from products to safety issues, and from current advances and holdups to future developments.
Desiccation tolerance was essential when plants first began to conquer land, roughly 400 million years ago. While most desiccation-tolerant plants belong to basal phylogenetic taxa, this capacity has also evolved among some vascular plant species. In this volume renowned experts treat plant desiccation tolerance at the organismic as well as at the cellular level. The diversity of ecophysiological adaptations and acclimations of cyanobacteria, eukaryotic algae, mosses, and lichens is addressed in several chapters. The particular problems of vascular plants during dehydration/rehydration cycles resulting not only from their hydraulic architectures, but also from severe secondary stresses associated with the desiccated state are discussed. Based on the treatment of desiccation tolerance at the organismic level, a second section of the book is devoted to the cell biological level. It delineates the general concepts of functional genomics, epigenetics, genetics, molecular biology and the sensing and signalling networks of systems biology involved in dehydration/rehydration cycles. This book provides an invaluable compilation of current knowledge, which is a prerequisite for a better understanding of plant desiccation tolerance in natural as well as agro- and forest ecosystems where water is one of the most essential resources.
The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them.
This book is a collection of chapters concerning the use of biomass for the sustainable production of energy and chemicals-an important goal that will help decrease the production of greenhouse gases to help mitigate global warming, provide energy security in the face of dwindling petroleum reserves, improve balance of payment problems and spur local economic development. Clearly there are ways to save energy that need to be encouraged more. These include more use of energy sources such as, among others, manure in anaerobic digesters, waste wood in forests as fuel or feedstock for cellulosic ethanol, and conservation reserve program (CRP) land crops that are presently unused in the US. The use of biofuels is not new; Rudolf Diesel used peanut oil as fuel in the ?rst engines he developed (Chap. 8), and ethanol was used in the early 1900s in the US as automobile fuel [Songstad et al. (2009) Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol Plant 45:189-192). Brazil now produces enough sugar cane ethanol to make up about 50% of its transportation fuel needs (Chap. 4). The next big thing will be cellulosic ethanol. At present, there is also the use of Miscanthus x giganteous as fuel for power plants in the UK (Chap. 2), bagasse (sugar cane waste) to power sugar cane mills (Chap. 4), and waste wood and sawdust to power sawmills (Chap. 7).
Deals with the historical perspectives and the current status of doubled haploid production along with its practical implications in basic and applied research. It highlights various haploid production methods with a comprehensive discussion on their pros and cons, bottlenecks, and embryogenic pathways. The review also describes in detail the results of molecular and genomic studies conducted to investigate the underlying principles of this spectacular technique that has changed the status of many species from recalcitrant to responsive over the last ninety years. "
Reproductive biology is the basis of species improvement and a thorough understanding of this is needed for plant improvement, whether by conventional or biotechnological methods. This book presents an up to date and comprehensive description of reproduction in lower plants, gymnosperms and higher plants. It covers general plant biology, pollination, pollen-pistil interaction, post-fertilization changes, and seed dormancy.
Plant tissue culture is an essential component of Biotechnology which has gained unbeatable recognition in plant sciences for successful micropropagation and improvement of plant species, leading to the commercial application. A number of plant species have been investigated around the globe. This book presents current research on the application of in vitro technology in the improvement of Balanites aegyptiaca Del., a medicinal plant of semi-arid tropics. The worldwide importance of forestry, summed to the lengthy generation cycles of tree species, makes unavoidable development of new technologies that complement conventional tree breeding programmes in order to obtain improved genotypes. Recently, a new set of tools has become available in the past 20 years that combined with traditional plant breeding will allow scientists to generate products that are genetically improved varieties of the future. These set of tools come under the general title of Biotechnology . The three specific biotechnological tools have been successfully used in several programmes of plant conservation, namely, tissue culture techniques for in vitro propagation, the use of molecular markers to assess the degree of variability among population and techniques of long-term conservation such as encapsulation and cryopreservation. Plant tissue culture techniques are particularly relevant and become an alternative not only for large scale propagation of individuals that are threatened, reduce production costs and increase gains to the industry, but also to provide ecological advantages as in phytoremediation or in the establishment of artificial plantings in weed infested site. The book gives a complete documentation of the results and demonstration of Balanites aegyptiaca conducted by the authors over the past 5 years. The end-to-end approach developed through plant tissue culture techniques is reflected in the book and there has been a successful transfer of technology from lab to field. The authors hope that this information would provide valuable data and also be a reference material for future research activities in this area."
Plant breeding, the domestication and systematic improvement of crop species, is the basis of past and present agriculture. Our so called primitive progenitors selected practically all our present-day crop plants, and the improvement wrought through millenia of selection has so changed some of them that in many cases their links to the past have been obliterated. There is no doubt that this ranks among the greatest of human achievements. Although plant breeding has been a continuous empirical activity for as long as humans have forsaken the vagaries and thrill of hunting for the security and toil of agriculture, genetic crop improvement is now very much of a twentieth-century discipline. Its scientific underpinnings date to the beginning of this century with the discovery of Gregor Mendel's classic 1865 paper on the inheritance of seven characters in the garden pea. If any science can be traced to single event, the best example is surely found in the conception of modern genetics that appears in this single creative work. The relationship of plant breeding progress to advances in genetics has become closely entwined. Mendel himself was concerned with crop improvement and worked on schemes for apple and pear breeding. Plant breeding also has claims on other scientific and agricultural disci plines-botany, plant pathology, biochemistry, statistics, taxonomy, entomology, and cytology, to name a few-and has also impinged on our social, ethical, economic, and political consciousness."
The food, feed, ?ber, and fuel needs of the changing world pose the challenge of doubling or tripling of world food, feed, and ?ber production by the year 2050 to meet the needs of a 11 billion global population. In addition, the dramatic changes in food prices in the recent years further warrant that production and productivity need to be enhanced to ensure adequate supplies. Biotechnology can make a signi?cant contribution to this effort as demonstrated by cotton and other crops; the new advances in biotechnology have made it possible to develop plants that contain genes that were not possible to be developed by sexual means. Cotton has been a leader in the use of biotechnology. With the introduction of Bt cotton, followed by stacked cotton products (insect and herbicide tolerance) and extensive use of molecular breeding tools, cotton cultivation has been much improved. The contributions in this book illustrate the scienti?c advances that are going on in cotton and the impact they continue to deliver for all cotton growers. Twelve percent of the global cotton area is now under biotech products at 15. 5 million ha. The primary bene?ts from using genetically engineered cotton include reduced insecticide use, lower production costs, improved yields, lower farming risks, and increased opportunities to grow cotton in areas of severe pest infestation.
Bioremediation is a rapidly advancing field and the technology has been applied successfully to remediate many contaminated sites. The goal of every soil remediation method is to enhance the degradation, transformation, or detoxification of pollutants and to protect, maintain and sustain environmental quality. Advances in our understanding of the ecology of microbial communities capable of breaking down various pollutants and the molecular and biochemical mechanisms by which biodegradation occurs have helped us in developing practical soil bioremediation strategies. Chapters dealing with the application of biological methods to soil remediation are contributed from experts authorities in the area of environmental science including microbiology and molecular biology from academic institutions and industry."
To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.
view than its own proper males should fecundate each blossom." ANDREW KNIGHT Philosophical Transactions, 1799 Pollination mechanisms and reproduction have a decisive bearing upon rational procedures in plant breeding and crop production. This book intends to furnish' under one cover an integrated botanical, genetical and breeding-methodologi cal treatment of the reproductive biology of spermatophytes mainly angiosperms; it is based on an advanced topical course in plant breeding taught at the Hebrew University of Jerusa lem. We have tried to present a coverage which is concise, but as comprehensive as possible, of the pollination mechanism and modes of reproduction of higher plants, and to illustrate topics, whenever practicable, by examples from cultivated plants. Nevertheless, some relevant publications may have escaped our attention or may not be mentioned because of various limitations. The book is organized into three parts. The first part starts with an evaluation of the significance of the different pollination mechanisms for plant breeding and crop produc tion, describes modes of reproduction in higher plants and discusses ecology and dynamics of pollination. The second part is devoted to crops propagated by self pollination and describes specific breeding procedures for such crops. The third part details sexual reproduction in higher plants and handles three mechanisms involved in the prevention of self pollination and their utilization in plant breeding: sex expres sion, incompatibility, and male sterility."
Dr Samuel Johnson, that famous eighteenth century lexicographer, said of oats 'A grain which in England is generally given to horses but in Scotland supports the people'. And presumably it was a Scotsman who riposted 'But what people and what horses ' That exchange encapsulates much of the history and role of oats - a cereal, once important as human food in parts of northern Europe but latterly used mainly as animal feed, especially favoured for horses. Although no longer a major food anywhere, oats still have a special and favoured niche in the cuisine of people living in the cooler and wetter regions of some parts of northern Europe. However, there is currently a resurgence of interest in the crop, because there is now considerable scientific evidence to support the view of Scotsmen who never doubted its dietary value. This book - very much an international effort, carefully orchestrated by Robert Welch - traces the origin, history and scientific progress which forms a sound basis for any further crop improvement and for broadening the utilization and marketing of oat products. Should rational consider ations lead to an increase in the importance of this cereal, I, for one, would be glad since I believe the rural landscape is the poorer for the increased rarity of golden fields of rippling oats which I used to be involved in harvesting." |
You may like...
Personal Narrative of a Pilgrimage to…
Richard Francis Burton
Hardcover
R1,013
Discovery Miles 10 130
Emerging and Evolving Topics in Multiple…
Anne C. La Flamme, Jacqueline Monique Orian
Hardcover
R2,685
Discovery Miles 26 850
Teaching Music to Students with Autism
Alice M. Hammel, Ryan M. Hourigan
Hardcover
R3,828
Discovery Miles 38 280
|