![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation > General
Flowers are the beautiful and complex reproductive structures of the angiosperms, one of the most diverse and successful groups of living organisms. The underlying thesis of this book is that to fully understand plant development (and why flowers differ in shape, structure and colour), it is necessary to understand why it is advantageous for them to look like they do. Conversely, in order to fully understand plant ecology, it is necessary to appreciate how floral structures have developed and evolved. Uniquely, this book addresses flowers and flowering from both a molecular genetic perspective (considering flower induction, development and self-incompatibility) and an ecological perspective (looking at the selective pressures placed on plants by pollinators, and the consequences for animal-plant co-evolution). Understanding Flowers and Flowering, the first edition of which won BES Marsh Book of the Year in 2009, begins by considering the evolution of flowers and the history of research into their development. This is followed by a detailed description of the processes which lead to flower production in model plants. The book then examines how flowers differ in shape, structure and colour, and how these differences are generated. Finally it assesses the role of these various aspects of floral biology in attracting pollinators and ensuring successful reproduction. This new edition has been completely revised and updated to reflect the latest advances in the field, especially an increased understanding of the evolution of floral traits. New chapters consider the genetic basis of the floral transition in diverse species, as well as the evolutionary lability of floral form. There is a new focus throughout on both phylogenetic position and morphological diversity across the angiosperm phylogeny. Understanding Flowers and Flowering continues to provide the first truly integrated study of the topic - one that discusses both the how and why of flowering plant reproductive biology.
The main practical breakthrough of this century is nanobiotechnology, an amalgamation of biology and nanotechnology based on the standards and methods of metabolism. The field mainly involves the analysis, synthesis and the links between molecular biology, nutritional science and nanotechnology. In addition, the field involves the links between other life sciences branches, since the improvement of nanotechnology strategies might be directed by considering the structure and the capability of nanoparticles present in the living cells. This book is a comprehensive evaluation of the latest nanobiotechnological developments, with an emphasis on applications, especially in aquaculture. It outlines, in-depth, modern techniques, and includes a variety of important sources that make this the perfect resource for researchers in this captivating world of nanobiotechnology.
While there has been great progress in the development of plant breeding over the last decade, the selection of suitable plants for human consumption began over 13,000 years ago. Since the Neolithic era, the cultivation of plants has progressed in Asia Minor, Asia, Europe, and ancient America, each specific to the locally wild plants as well as the ecological and social conditions. A handy reference for knowing our past, understanding the present, and creating the future, this book provides a comprehensive treatment of the development of crop improvement methods over the centuries. It features an extensive historical treatment of development, including influential individuals in the field, plant cultivation in various regions, techniques used in the Old World, and cropping in ancient America. The advances of scientific plant breeding in the twentieth century is extensively explored, including efficient selection methods, hybrid breeding, induced polyploidy, mutation research, biotechnology, and genetic manipulation. Finally, this book presents information on approaches to the sustainability of breeding and to cope with climatic changes as well as the growing world population.
For centuries orchids have been among the most popular of plant
families, with thousands of species and hybrids cultivated
worldwide for the diversity, beauty, and intricacy of their
flowers.
This advanced textbook is the first to explore the consequences of plant dispersal for population and community dynamics, spatial patterns, and evolution. It successfully integrates a rapidly expanding body of theoretical and empirical research. The first comprehensive treatment of plant dispersal set within a population framework Examines both the processes and consequence of dispersal Spans the entire range of research, from natural history and collection of empirical data to modeling and evolutionary theory Provides a clear and simple explanation of mathematical concepts Dispersal in Plants is aimed principally at graduates interested in plant ecology, although given the strong current interests in invasive species and global change it will also be of interest and use to a broad audience of plant scientists and ecologists seeking an authoritative overview of this rapidly expanding field.
This title includes a number of Open Access chapters. In horticulture, agriculture, and food science, plants' reproductive physiology is an important topic relating to fruits and vegetables, the main consumable parts of plants. All aspects of plant physiology, including plants' reproductive systems, are important to the production of food, fibers, medicine, cosmetics, and even fuels. This volume presents many new studies on plants' reproductive systems, including new research on sperm cells in plant reproduction; the effect of herbivory on plant reproduction; disturbances to functional diversity; plant genes, hormones, DNA; and much more.
For centuries orchids have been among the most popular of plant
families, with thousands of species and hybrids cultivated
worldwide for the diversity, beauty, and intricacy of their
flowers.
Agro-industrial wastes are end-products emerging after industrial processing operations and also from their treatment and disposal e.g. solid fruit wastes and sludge. The agro-industrial wastes are often present in multiphase and comprise multicomponent. Nevertheless, these wastes are a goldmine as they possess valuable organic matter which can be diverted towards high value products ranging from polymers to antibiotics to platform chemicals. There have been plenty of books published on bioenergy, enzymes and organic acids, among others. However, this emerging field of biochemical has not yet been covered so far which is an important entity of the biorefinery model from waste biomass and needs to be understood from fundamental, applied as well as commercial perspective which has been laid out in this book.
This book caters to the need of researchers working in the ever-evolving field of agricultural biotechnology. It discusses and provides in-depth information about latest advancements happening in this field. The book discusses evolution of plant tissue culture techniques, development of doubled haploids technology, role of recombinant-DNA technology in crop improvement. It also provides an insight into the global status of genetically modified crops, use of RNAi technology and mi-RNAs in plant improvement. Chapters are also dedicated for different branches of 'omics' science including genomics, bioinformatics, proteomics, metabolomics and phenomics along with the use of molecular markers in tagging and mapping of various genes/QTLs of agronomic importance. This book also covers the role of enzymes and microbes in agriculture in productivity enhancement. It is of interest to teachers, researchers of biotechnology and agriculture scientists. Also the book serves as additional reading material for undergraduate and postgraduate students of biotechnology, agriculture, horticulture, forestry, ecology, soil science, and environmental sciences. National and international biotechnologists and agricultural scientists will also find this to be a useful read.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the 'green super rice' breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.
This edited book presents the latest research on cucumber, its genetic resources and diversity, tissue culture and genetic transformation, mapping of economic genes and QTLs, whole genome sequencing, comparative genomics, and breeding strategies. The mechanism of sex expression, interspecific hybridization, and cell biology are also described. The book discusses the genome draft of cucumber and the application of genome editing. This book is useful to the students, teachers and scientists in academia and relevant private companies interested in horticulture, genetics, breeding, and related areas.
This book discusses CRISPR/Cas- one of the most powerful tools available to scientists for genome editing. CRISPR/Cas is not only a genome editing tool, but researchers have also engineered it for gene regulation, genome imaging, base editing and epigenome regulations. This book describes the entire toolkit for CRISPR/Cas. The opening section gives an introduction to the technique and compares it with other genome editing tools. Further section gives a historical perspective of the tool, along with its detailed classification. The next chapters describe bioinformatic tools in CRISPR/Cas, and delivery methods for CRISPR/Cas. The book also discusses about the applications of CRISPR/Cas beyond genome editing and use of CRISPR for rewriting genetic codes. The book dedicates a section to the use of CRISPR in plants. The book culminates with a chapter on the current status, challenges and shortcomings of the CRISPR/Cas genome editing tool. The book would be highly interesting to students and researchers in molecular biology, biochemistry, biotechnology, food science, agriculture and plant sciences.
Despite the undoubted success of a scientific approach to pharmaceuticals, the last few decades have witnessed a spectacular rise in interest in herbal medicinal products. This general interest has been followed by increasing scientific and commercial attention that led to the coining of the term ethnopharmacology to describe the scientific discipline investigating the use of these products. Presenting detailed information from all regions of the world, Ethnoveterinary Botanical Medicine provides techniques to evaluate the efficacy of plants used in animal health care and addresses the challenges faced by researchers and practitioners in the field.
This book gathers the latest information on the organization of genomes in wild Solanum species and emphasizes how this information is yielding direct outcomes in the fields of molecular breeding, as well as a better understanding of both the patterns and processes of evolution. Cultivated Solanums, such as potato, tomato, and pepper, possess a high number of wild relatives that are of great importance for practical breeding and evolutionary studies. Their germplasm is often characterized by allelic diversity, as well as genes that are lacking in the cultivated species. Wild Solanums have not been fully exploited by breeders. This is mainly due to the lack of information regarding their genetics and genomics. However, the genome of important cultivated Solanaceae such as potato, tomato, eggplant, and pepper has already been sequenced. On the heels of these recent developments, wild Solanum genomes are now becoming available, opening an exciting new era for both basic research and varietal development in the Solanaceae.
This book is designed to popularize Quinoa cereal among both scientific and food industry. Quinoa is an attractive candidate for protein replacement, has potential for futuristic biotechnological modifications, and is able to grow under many different abiotic stresses. To save the world from animal cruelty, quinoa emerges as a hero for vegans and vegetarians. This book deals with morphological features, life cycle, nutritional qualities, genetics, agronomic manipulations, ecological communications, stress tolerance mechanisms, and food applications of Chenopodium quinoa. Quinoa is a pseudo-cereal native to Andes Region in South America. Over time, it spread to many different regions worldwide and is emerging as protein-rich vegetarian food source. In order to cure malnutrition globally, it is important to channel this lesser-known grain to local cultivators. This can only be done through well-proven scientific data that supports its qualities. This book aims to do the same, while also giving an insight into the vast scope quinoa posses as an experimental crop. Its stress-tolerant abilities can inspire scientists to understand those mechanisms, further exploit them, and even introduce them into other stress-sensitive crops. In future, quinoa can be among the top sources that offer food security. Due to its adaptability, ease of cultivation, and rich output, sustainability can be achieved by regulating its breeding and growth. This book is of interest to researchers, teachers, agronomic cultivators, environmentalists, botanists, microbiologists, geneticists and food technologists. This book covers recent advances, challenges in cultivation, biology, nutrition, and agricultural science topics, suitable for both young learners and advanced scientists. Cultivators who want to know more about quinoa and introduce it into their agronomic applications will find helpful information from the text.
Plants, being sessile and autotrophic in nature, must cope with challenging environmental aberrations and therefore have evolved various responsive or defensive mechanisms including stress sensing mechanisms, antioxidant system, signaling pathways, secondary metabolites biosynthesis, and other defensive pathways among which accumulation of osmolytes or osmo-protectants is an important phenomenon. Osmolytes with organic chemical nature termed as compatible solutes are highly soluble compounds with no net charge at physiological pH and nontoxic at higher concentrations to plant cells. Compatible solutes in plants involve compounds like proline, glycine betaine, polyamines, trehalose, raffinose family oligosaccharides, fructans, gamma aminobutyric acid (GABA), and sugar alcohols playing structural, physiological, biochemical, and signaling roles during normal plant growth and development. The current and sustaining problems of climate change and increasing world population has challenged global food security. To feed more than 9 billion, the estimated population by 2050, the yield of major crops needs to be increased 1.1-1.3% per year, which is mainly restricted by the yield ceiling. A major factor limiting the crop yield is the changing global environmental conditions which includes drought, salinity and extreme temperatures and are responsible for a reduction of crop yield in almost all the crop plants. This condition may worsen with a decrease in agricultural land or the loss of potential crop yields by 70%. Therefore, it is a challenging task for agricultural scientists to develop tolerant/resistant varieties against abiotic stresses. The development of stress tolerant plant varieties through conventional breeding is very slow due to complex multigene traits. Engineering compatible solutes biosynthesis by deciphering the mechanism behind the abiotic tolerance or accumulation in plants cell is a potential emerging strategy to mitigate adverse effects of abiotic stresses and increase global crop production. However, detailed information on compatible solutes, including their sensing/signaling, biosynthesis, regulatory components, underlying biochemical mechanisms, crosstalk with other signaling pathways, and transgenic development have not been compiled into a single resource. Our book intends to fill this unmet need, with insight from recent advances in compatible solutes research on agriculturally important crop plants.
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye's domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
Fungi are an essential, fascinating and biotechnologically useful group of organisms with an incredible biotechnological potential for industrial exploitation. Knowledge of the world's fungal diversity and its use is still incomplete and fragmented. There are many opportunities to accelerate the process of filling knowledge gaps in these areas. The worldwide interest of the current era is to increase the tendency to use natural substances instead of synthetic ones. The increasing urge in society for natural ingredients has compelled biotechnologists to explore novel bioresources which can be exploited in industrial sector. Fungi, due to their unique attributes and broad range of their biological activities hold great promises for their application in biotechnology and industry. Fungi are an efficient source of antioxidants, enzymes, pigments, and many other secondary metabolites. The large scale production of fungal pigments and their utility provides natural coloration without creating harmful effects on entering the environment, a safer alternative use to synthetic colorants. The fungal enzymes can be exploited in wide range of industries such as food, detergent, paper, and also for removal toxic waste. This book will serve as valuable source of information as well as will provide new directions to researchers to conduct novel research in field of mycology. Volume 2 of "Industrially Important Fungi for Sustainable Development" provides an overview to understanding bioprospecting of fungal biomolecules and their industrial application for future sustainability. It encompasses current advanced knowledge of fungal communities and their potential biotechnological applications in industry and allied sectors. The book will be useful to scientists, researchers, and students of microbiology, biotechnology, agriculture, molecular biology, and environmental biology.
Cash crops are grown and sold for monetary gain and not necessarily for sustenance. They include coffee, tea, coconut, cotton, jute, groundnut, castor, linseed, cocoa, rubber, cassava, soybean, sweet potato, potato, wheat, corn and teff. While some of these crops have been improved for realizing yield potential, breeding of many of them is still in infancy. Crops that underwent rigorous breeding have eventually lost much of the diversity due to extensive cultivation with a few improved varieties and the diversity in less bred species is to be conserved. Over the past years, scholars and policy makers have become increasingly aware of the short and long-run impact of climatic factors on economic, food security, social and political outcomes . Genetic diversity, natural and induced, is much needed for the future generations to sustain food production with more climate resilient crops. In contrast, crop uniformity produced across the farm fields in the form of improved varieties is genetically vulnerable to biotic and abiotic stresses. Thus, it is essential and challenging to address the issue of compromising between maximizing crop yield under a given set of conditions and minimizing the risk of crop failure when conditions change. Cash crops are grown in an array of climatic conditions. Many of the world's poor still live in rural areas. Many are subsistence farmers, operating very small farms using very little agricultural inputs for achieving marketable outputs. Conserving the diversity of these crops and addressing all issues of crop culture through modern tools of biotechnology and genomics is a real challenge. We believe the focus of this book is to fill an unmet need of this and other grower communities by providing the necessary knowledge, albeit indirectly via the academics, to manage the risks of cash crops breeding through managing genetic diversity.
The protein molecule is the basic building block of every living entity. Its deficiency leads to restricted growth and development of individuals. Globally, such malnutrition is on the rise due to various reasons such as rapid population growth, stagnation of productivity, and ever-rising costs. Millions of people, especially in developing and under-developed countries, suffer from protein malnutrition and the only possible solution is to encourage farmers to grow high-protein food legume crops in their fields for domestic consumption. This, however, could be possible if farmers are provided with new cultivars with high yield, and resistance to major insects, diseases, and key abiotic stresses. The major food legume crops are chickpea, cowpea, common bean, groundnut, lentil, pigeonpea, and soybean. Predominantly, the legume crops are grown under a subsistence level and, therefore, in comparison to cereals and horticultural crops their productivity is low and highly variable. The crop breeders around the globe are engaged in breeding suitable cultivars for harsh and changing environments but success has been limited and not up to needs. With the recent development of new technologies in plant sciences, efforts are being made to help under-privileged farmers through breeding new cultivars which will produce more protein per unit of land area. In this book, the contributors analyze the constraints, review new technologies, and propose a future course of crop breeding programs in seven cold and warm season legume crops.
Plants are an important source of fats and oils, which are essential for the human diet. In recent years, genomics of oil biosynthesis in plants have attracted great interest, especially in high oil-bearing plants, such as sesame, olive, sunflower, and palm. Considering that, genome sequencing projects of these plants have been undertaken with the help of advanced genomics tools such as next generation sequencing. Several genome sequencing projects of oil crops are in progress and many others are en route. In addition to genome information, advanced genomics approaches are discussed such as transcriptomics, genomics-assisted breeding, genome-wide association study (GWAS), genotyping by sequencing (GBS), and CRISPR. These have all improved our understanding of the oil biosynthesis mechanism and breeding strategies for oil production. There is, however, no book that covers the genomes and genomics of oil crops. For this reason, in this volume we collected the most recent knowledge of oil crop genomics for researchers who study oil crop genomes, genomics, biotechnology, pharmacology, and medicine. This book covers all genome-sequenced oil crops as well as the plants producing important oil metabolites. Throughout this book, the latest genomics developments and discoveries are highlighted as well as open problems and future challenges in oil crop genomics. In doing so, we have covered the state-of-the-art of developments and trends of oil crop genomics.
Now available in paperback, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement. Chapters include discussions of breeding methodology, quantitative genetics, genomics and bioinformatics and present statistical issues related to gene mapping, marker-assisted selection and genotype by environment interactions in clear and concise language. Providing an integrated profile of molecular breeding in plants, this book will be an essential resource for researchers and students involved in plant biology and breeding, genetics and applied genomics.
Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book updates and introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. New plant breeding techniques including CRISPR-cas system are now tools to meet these challenges both in developed countries and in developing countries. Ethical issues, intellectual property rights, regulation policies in various countries related to agricultural biotechnology are examined. The rapid developments in plant biotechnology are explained to a large audience with relevant examples. New varieties of crops can be adapted to new climatic conditions in order to reduce pest-associated losses and the adverse abiotic effects
This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists. |
You may like...
Plant Small RNA in Food Crops
Praveen Guleria, Vineet Kumar, …
Paperback
R4,949
Discovery Miles 49 490
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,045
Discovery Miles 30 450
Hormonal Cross-Talk, Plant Defense and…
Azamal Husen, Wenying Zhang
Paperback
R3,950
Discovery Miles 39 500
|