![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation > General
The Argentinean Patagonia offers a great diversity of scarcely explored environments suitable for the bioprospection of biotechnological relevant microorganisms. This book provides readers with a concise and clearly illustrated treatment of outstanding topics of Patagonian microbiology and biotechnology. It covers a wide range of areas interesting to several audiences such as researchers, graduate students and professionals working on the industry food. Among the main topics we will discuss examples of environmental applications, such as heavy metal and hydrocarbon bioremediation, bioprospection of valuable molecules from extremophilic bacteria and yeasts, the use of Patagonian yeasts and lactic acid bacteria in fermented foods and beverages, aquaculture probiotics and yeasts for food biopreservation.
Setaria viridis and S.italica make up a model grass system to investigate C4 photosynthesis, cell wall biosynthesis, responses to drought, herbicide, and other environmental stressors, genome dynamics, developmental genetics and morphology, and interactions with microorganisms. Setaria viridis (green foxtail) is one of the world's most widespread weeds, and its small size, native variation, rapidly burgeoning genetic and genomic resources, and transformability are making it the system of choice for both basic research and its translation into crop improvement. Its domesticated variant, S. italica (foxtail millet), is a drought-hardy cereal grown in China, India and Africa, and new breeding techniques show great potential for improving yields and nutrition for drought-prone regions. This book brings together for the first time evolutionary, genomic, genetic, and morphological analyses, together with protocols for growing and transforming Setaria, and approaches to high throughput genotyping and candidate gene analysis. Authors include major Setaria researchers from both the USA and overseas.
This book provides an introduction to the genetics, genomics, and breeding of the olive tree, a multi-functional long-lived crop plant that is relevant not only for culinary olive and oil production, but also for shaping the landscape and history of many rural areas for centuries. Today, the recognized health benefits of extra-virgin olive oil provide new impulses for introducing innovation in olive crop management and olive breeding for a deeper understanding of the biological processes underlying fruit quality, adaptation to crop environment and response to threatening epidemics due to biological agents such as Xylella fastidiosa. The individual chapters discuss genetic resources; classic and modern breeding methods for providing new olive cultivars; the genotype x environment interactions determining the response to biotic and abiotic stresses; fruit metabolism related to oil production and the synthesis of health beneficial molecules; the mapping of genes and quantitative trait locus; and genomic, transcriptomic and proteomic strategies pertinent to the development of a molecular platform and template amenable to precise and rapid genetic modifications using recently developed genome editing tools.
This book presents basic concepts, methodologies and applications of biotechnology for the conservation and propagation of aromatic, medicinal and other economic plants. It caters to the needs and challenges of researchers in plant biology, biotechnology, the medical sciences, pharmaceutical biotechnology and pharmacology areas by providing an accessible and cost-effective practical approach to micro-propagation and conservation strategies for plant species. It also includes illustrations describing a complete documentation of the results and research into particular plant species conducted by the authors over the past 5 years. Plant Biotechnology has been a subject of academic interest for a considerable time. In recent years, it has also become a useful tool in agriculture and medicine, as well as a popular area of biological research. Current economic growth is globally projected in a highly positive manner, but the challenges many countries face with regard to food, feed, malnutrition, infectious diseases, the newly identified life-style diseases, and energy shortages, all of which are worsened by an ever-deteriorating environment, continue to pull the growth digits back. The common thread that connects all of the above challenges is biotechnology, which could provide many answers. Molecular biology and biotechnology have now become an integral part of tissue culture research. The tremendous impact generated by genetic engineering and consequently of transgenics now allows us to manipulate plant genomes at will. There has indeed been a rapid development in this area with major successes in both developed and developing countries. The book introduces several new and exciting areas to researchers who are unfamiliar with plant biotechnology and also serves as a review of ongoing research and future directions for scholars. The book highlights numerous methods for in vitro propagation and utilization of techniques in raising transgenics to help readers reproduce the experiments discussed.
This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species' genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.
Bananas and plantains are among the most important food and cash crops in the world. They are cultivated in more than 135 countries, across the tropics and subtropics, with an annual global production of ca. 130 million metric tonnes. Though bananas are one of the most important components of food security in many developing countries, banana production is threatened by both abiotic and biotic stresses. These include a wide range of diseases and pests, such as bunchy top virus, burrowing nematodes, black Sigatoka or black leaf streak, Fusarium wilt, etc. In recent years, considerable progress has been made and several biotechnological and genomic tools have been employed to help understand and unravel the mysterious banana genome. Molecular and genomic studies have helped to decipher the Musa genome and its evolution. Genetic linkage map and whole genome sequencing of both Musa acuminata and Musa balbisiana (progenitors of cultivated banana) have completely changed the way of thinking and the approach on banana crop improvement. Whole-genome sequencing has helped to improve the selection of quantitative traits such as yield, as well as the selection of optimal parents for developing required hybrids in breeding programs. Gene isolation and the analysis of mutants have helped in the characterization of genes of agronomic value and the associated regulatory sequences. With the advent of molecular markers and new statistical tools, it is now possible to measure the diversity, identify genes and useful alleles linked to important agronomic traits. Further these alleles can be incorporated into cultivars through marker assisted selection or through transgenic approach. Transgenic approaches are potential tools for direct transfer of these genes into popular cultivars, which are generally not amenable for conventional breeding techniques, in specific with crops such as bananas which are sterile, triploid and heterozygous thereby making it difficult to reconstruct the recurrent genotypes in banana. Transgenic techniques thus have helped overcome the difficulty of working with sterile, triploid banana crop. In the last five years, enormous amount of new information and techniques have been generated for banana. A comprehensive book entitled "Banana: Genomics and Transgenic Approaches for Genetic improvement" on banana genomics, latest transgenic technologies and tools available for improved crop development in banana will address all these requirements.
"Genomic Applications for Crop Breeding: Abiotic Stress, Quality and Yield Improvement "is the second of two volumes looking at the latest advances in genomic applications to crop breeding. This volume focuses on advances improving crop resistance to abiotic stresses such as extreme heat, drought, flooding as well as advances made in quality and yield improvement. Chapters examine advances in such key crops as rice, maize, and sugarcane, among others. "Genomic Applications for Crop Breeding: Abiotic Stress, Quality and Yield Improvement "complements the earlier volume on biotic stressors and will be an essential purchase for those interested in crop science and food production.
This book focuses on the evolution of plant viruses, their molecular classification, epidemics and management, covering topics relating to evolutionary mechanisms, viral ecology and emergence, appropriate analysis methods, and the role of evolution in taxonomy. The currently emerging virus species are increasingly becoming a threat to our way of life, both economically and physically. Plant viruses are particularly significant as they affect our food supply and are capable of rapidly spreading to new plant species. In basic research, plant viruses have become useful models to analyze the molecular biology of plant gene regulation and cell-cell communication. The small size of DNA genome of viruses possesses minimal coding capacity and replicates in the host cell nucleus with the help of host plant cellular machinery. Thus, studying virus cellular processes provides a good basis for explaining DNA replication, transcription, mRNA processing, protein expression and gene silencing in plants. A better understanding of these cellular processes will help us design antiviral strategies for plants. The book provides in-depth information on plant virus gene interactions with hosts, localization and expression and the latest advances in our understanding of plant virus evolution, their responses and crop improvement. Combining characterization of plant viruses and disease management and presenting them together makes it easy to compare all aspects of resistance, tolerance and management strategies. As such, it is a useful resource for molecular biologists and plant virologists alike.
The knowledge of ecology and epidemiology of rhizomania is particularly useful to understand the means and practices able to limit or avoid its further diffusion. Some promising methods of biological control using coexisting and non-pathogenic organisms could potentially help improve the action of the not completely effective genetic resistances. This integrated protection would be valuable, especially in the even more frequent development of resistance-breaking strains in the BNYVV, where the known types of resistance, alone or in combination, seem to have lost part of their original ability to protect the crop. Therefore, further efforts will be needed to discover new traits likely still present in the wild species of the genus Beta. The availability of large collections of germplasm stored in the International Beta gene-banks should ensure the enhanced efficiency of genetic resistance by means of conventional and marker-assisted selection methods. Some almost immune transgenic varieties seem already to be waiting for release where and when it will be possible. The introduction chapter describes briefly the sugar beet crop, the more common diseases, and the damage caused by rhizomania. The following chapters discuss biological properties of the causal virus, BNYVV, and its vector, Polymyxa betae, and their interactions with the environment and the host-plant. In particular, the great advances in research of the molecular biology of BNYVV should be noteworthy, which have been established by a wide range of the most modern methods. Recent work focused on the genetic diversity and evolution of BNYVV is moving forward our understanding of the dramatic worldwide epidemics of rhizomania. Newly developed molecular techniques also lead to practical applications, such as quantification of inoculum in ecological and epidemiological research.
Fungi are distinct eukaryotic organisms renowned for their remarkable biodiversity and extensive habitat range. Many fungal species have long been exploited for food and medicines. This volume considers other important applications of fungal biotechnology especially in an environmental context, showcasing the essential contributions of these amazingly versatile organisms. It explores how fungi offer sustainable solutions to tackle various environmental concerns. Written by eminent experts in their fields, this work presents a broad array of current advances and future prospects in fungal environmental biotechnology and discusses their limitations and potential. The book is organized in five parts, each addressing a theme of the UN Sustainable Development Goals (SDG): strengthen food security (Zero Hunger), wastewater treatment (Clean Water & Sanitation), pollution reduction (Life on Land), biofuel production (Affordable & Clean Energy) and biosynthesis of novel biomolecules (Responsible Consumption & Production).
This book provides an overview of the current state of knowledge of the genetics and genomics of the agriculturally important Cucurbitaceae plant family, which includes crops such as watermelon, melon, cucumber, summer and winter squashes, pumpkins, and gourds. Recent years have resulted in tremendous increases in our knowledge of these species due to large scale genomic and transcriptomic studies and production of draft genomes for the four major species, Citrullus lanatus, Cucumis melo, Cucumis sativus, and Cucurbita spp. This text examines genetic resources and structural and functional genomics for each species group and across species groups. In addition, it explores genomic-informed understanding and commonalities in cucurbit biology with respect to vegetative growth, floral development and sex expression, fruit growth and development, and important fruit quality traits.
This book is a compilation of recent global measures to conserve bio-resources and manage biotic and abiotic stresses. It highlights emerging issues related to agriculture, abiotic and biotic stress factors, ethnic knowledge, climate change and global warming, as well as natural resources and their sustainable management. It also focuses on the consolidated efforts of scientists and academics engaged in addressing a number of issues related to resource management and combating stresses in order to protect the Earth. Crop production and productivity have been significantly improved, however, there have been no corresponding practical advances in sustainable agriculture.This book offers a wide range of affordable approaches to managing bio-resources with a focus on sustainability. Lastly, it describes research highlights and future areas of research.
This book describes the basic botanical features of kiwifruit and its wild relatives, reports on the steps that led to its genome sequencing, and discusses the results obtained with the assembly and annotation. The core chapters provide essential insights into the main gene families that characterize this species as a crop, including the genes controlling sugar and starch metabolism, pigment biosynthesis and degradation, the ascorbic-acid pathway, fruit softening and postharvest metabolism, allergens, and resistance to pests and diseases. The book offers a valuable reference guide for taxonomists, geneticists and horticulturists. Further, since information gained from the genome sequence is extraordinarily useful in assessing the breeding value of individuals based on whole-genome scans, it will especially benefit plant breeders. Accordingly, chapters are included that focus on gene introgression from wild relatives and genome-based breeding.
This book highlights the implications of nanotechnology in plant sciences, particularly its potential to improve food and agricultural systems, through innovative, eco-friendly approaches, and as a result to increase plant productivity. Topics include various aspects of nanomaterials: biophysical and biochemical properties; methods of treatment, detection and quantification; methods of quantifying the uptake of nanomaterials and their translocation and accumulation in plants. In addition, the effects on plant growth and development, the role of nanoparticles in changes in gene and protein expression, and delivery of genetic materials for genetic improvement are discussed. It also explores how nanotechnology can improve plant protection and plant nutrition, and addresses concerns about using nanoparticles and their compliances. This book provides a comprehensive overview of the application potential of nanoparticles in plant science and serves as a valuable resource for students, teachers, researchers and professionals working on nanotechnology.
This book serves the larger community of plant researchers working on the taxonomy, species delimitation, phylogeny, and biogeography of pseudo-cereals, with a special emphasis on amaranths. It also provides extensive information on the nutritive value of underutilized pseudo-cereals, the goal being to broaden the vegetable list. Amaranthus is a cosmopolitan genus of annual or short-lived perennial plants. Most of the species are summer annual weeds and are commonly referred to as pigweed. Only a few are cultivated as vitamin-rich vegetables and ornamentals. The protein-rich seeds of a handful of species, known as grain amaranths, are consumed as pseudo-cereals. Amaranthusmanifests considerable morphological diversity among and even within certain species, and there is no general agreement on the taxonomy or number of species. Currently the genus Amaranthus is believed to include three recognized subgenera and 70 species. Amatanthus is considered to potentially offer an alternative crop in temperate and tropical climate. The classification of amaranths is ambiguous due to the lack of discrete and quantitative species-defining characteristics and the wide range of phenotypic plasticity, as well as introgression and hybridization involving weedy and crop species. It is a known fact that both vegetable and grain amaranths have evolved from their respective weed progenitors. There are more than 180 different weed species that are herbicide-resistant, and amaranths are considered to be leading members of the resistant biotypes. Amaranth species provide ample scope for investigating herbicide resistance mechanisms. Amaranths also show variability in terms of their mating behavior and germplasm, adaptability to different growing conditions, and wide range of variability in sexual systems, from monoecy to dioecy. A solid grasp of these parameters is essential to the future utilization of amaranths as super crops. There are quite a few amaranth research center and germplasm collections all over the world that maintain and evaluate working germplasms. To date, the genetic improvement of amaranths has primarily involved the application of conventional selection methods. But advances in genomics and biotechnology have dramatically enriched the potential to manipulate the amaranth genome, especially improving the amount and availability of nutrients. In conclusion, the book covers all aspects of amaranths, including their food value, significance as vegetables and pseudo-cereals, taxonomy, phylogeny, germplasm variability, breeding behavior and strategies, cultivation practices, and variability in terms of their sexual systems. It offers a valuable resource for all students, researchers and experts working in the field of plant taxonomy and diversity.
This book presents a flavour of activities focussed on the need for sustainably produced biomass to support European strategic objectives for the developing bioeconomy. The chapters cover five broad topic areas relating to the use of perennial biomass crops in Europe. These are: 'Bioenergy Resources from Perennial Crops in Europe', 'European Regional Examples for the Use of Perennial Crops for Bioenergy', 'Genotypic Selection of Perennial Biomass Crops for Crop Improvement', 'Ecophysiology of Perennial Biomass Crops' and 'Examples of End-Use of Perennial Biomass Crops'. Two major issues relating to the future use of biomass energy are the identification of the most suitable second generation biomass crops and the need to utilise land not under intensive agricultural production, broadly referred to as 'marginal land'. The two main categories of plants that fit these needs are perennial rhizomatous grasses and trees that can be coppiced. The overarching questions that are addressed in the book relate to the suitability of perennial crops for providing feedstocks for a European bioeconomy and the need to exploit environments for biomass crops which do not compete with food crops. Bioenergy is the subject of a wide range of national and European policy measures. New developments covered are, for example, the use of perennial grasses to produce protein for animal feed and concepts to use perennial biomass crops to mitigate carbon emissions through soil carbon sequestration. Several chapters also show how prudent selection of suitable genotypes and breeding are essential to develop high yielding and sustainable second generation biomass crops which are adapted to a wide range of unfavourable conditions like chilling and freezing, drought, flooding and salinity. The final chapters also emphasise the need to be kept an eye out for potential new end-uses of perennial biomass crops that will contribute further to the developing bioeconomy.
Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.
This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.
This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.
Until recently, the production of fruits by plants, their consumption by animals (frugivory) and the relevance of these to seed dispersal have attracted less attention than topics such as pollination biology. However, since the 1970s they have started to gain more prominence and now give rise to more research funding, seminal papers and international symposiums. This book contains chapters adapted from the Third International Symposium-Workshop on Frugivores and Seed Dispersal held in August 2000, in Rio Quente, Brazil.
Improvements in adaptation and maturity leading to greater yield are the most important criteria for the acceptance of a new crop cultivar, since it is the yield which dictates the economic value of the crop. Therefore, yield improvement is one goal of virtually every crop breeding program. Many such programs have tended to concentrate on identifying the genetic traits responsible for higher yield and selecting each of them in the later stages of the breeding cycle. However, selection for yield per se is still the most effective method, since it is a combination of traits, operating within the limits of the system, which finally determines yield. This book presents a whole-system, or holistic viewpoint for the improvement of adaptation, maturity and yield. Central to its thesis is recognition that system-established changes in levels of the components of the plant system, within a constant capacity, i.e. within the limitations of the system, determines yield and other cultivar characteristics. It goes on to describe how this can improve our understanding of plant systems and enable breeders to maximize performance under prevailing field conditions. Based principally on 25 years of research by the authors, the ideas presented in this book are essential reading for crop physiologists and plant breeders.
Lupins have until recently remained wild or semi-domesticated species of minor interest to agriculture, although their value as a rotation crop was noted 2,000 years ago. However, with the advent of the science of genetics in the early twentieth century, full domestication of Lupinus species for use as crops was begun, by the combination of favourable genes such as those for low alkaloid content, non-shattering pods and soft seeds. As a result several lupin species have become an important part of temperate farming systems as a high protein crop for both animal and human consumption. This book gives an authoritative account of the history, distribution and taxonomy of Lupinus species and the current knowledge of all aspects of their agronomy and impact on agriculture, including breeding, genetics and biotechnology, nutrition, nitrogen fixation, transport physiology, toxins, stress responses, pests and diseases, agronomy and farming systems, composition and food uses, economic value and trade. Contributions are made by researchers in Australia and Europe who have had key roles in lupin research. The book is essential reading for botanists, agronomists, plant breeders and geneticists involved with lupins and other grain legumes or with an interest in crop domestication and evolution. It also provides important information for lecturers and students of agriculture and for professionals in the livestock and food industries.
A proper understanding of the structural organization of the plant body is essential to any study in plant biology. Experimental studies in vivo and in situ will lead to structural, physiological, and cellular changes of the experimental material. To study macroscopic and microscopic changes, different histological methods and microtechniques can be used as they provide valuable information of the experimental system. In addition, the observed structural changes allow investigators to set hypothesis for further studies based on one's own observation. Thus, proper selection and utilization of microtechniques are a must for the success of a research program. At present, an up-to-date collection of protocols are not readily available in the literature. The latest work in plant microtechniques was published in 1999 by Ruzin but many others are no longer in print [e.g., Jensen (1964); O'Brien and McCully (1981)]. Furthermore, a majority of published works focus on techniques related to general processing and staining procedures. A comprehensive treatment that encompasses broader applications of microtechniques to other disciplines is lacking [e.g., archeology, wood science, etc.]. There is a need to create a comprehensive volume of botanical methods and protocols which includes traditional and novel techniques that can be used by researchers in plant science and investigators in other disciplines that require plant microtechniques in their research and teaching. This book covers a wide variety of applications and brings them up-to-date to make them understandable and relevant, especially to students using the methods for the first time. It is our intention to create a useful reference for plant histology and related methods that will serve as a foundation for plant scholars, researchers, and teachers in the plant sciences.
This book provides insights into the latest achievements in genomics research on Brassica rapa. It describes the findings on this Brassica species, the first of the U's triangle that has been sequenced and a close relative to the model plant Arabidopsis, which provide a basis for investigations of major Brassica crop species. Further, the book focuses on the development of tools to facilitate the transfer of our rich knowledge on Arabidopsis to a cultivated Brassica crop. Key topics covered include genomic resources, assembly tools, annotation of the genome, transposable elements, comparative genomics, evolution of Brassica genomes, and advances in the application of genomics in the breeding of Brassica rapa crops. |
You may like...
Dialogue on Writing - Rethinking Esl…
Geraldine Deluca, Len Fox, …
Paperback
R2,462
Discovery Miles 24 620
13th EAI International Conference on…
Chika Sugimoto, Hamed Farhadi, …
Hardcover
R5,226
Discovery Miles 52 260
Word Processors and the Writing Process…
Lillian S. Bridwell, Paula Nancarrow, …
Hardcover
R1,261
Discovery Miles 12 610
Backward Fuzzy Rule Interpolation
Shangzhu Jin, Qiang Shen, …
Hardcover
R3,064
Discovery Miles 30 640
|