![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This is an extensively revised second edition of "Interfacial Transport Phenomena", a unique presentation of transport phenomena or continuum mechanics focused on momentum, energy, and mass transfer at interfaces. It discusses transport phenomena at common lines or three-phase lines of contact. The emphasis is upon achieving an in-depth understanding based upon first principles. It includes exercises and answers, and can serve as a graduate level textbook.
Model Validation and Uncertainty Quantification, Volume 3. Proceedings of the 33rd IMAC, A Conference and Exposition on Balancing Simulation and Testing, 2015, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Uncertainty Quantification & Model Validation Uncertainty Propagation in Structural Dynamics Bayesian & Markov Chain Monte Carlo Methods Practical Applications of MVUQ Advances in MVUQ & Model Updating
This book addresses the need for a fundamental understanding of the physical origin, the mathematical behavior and the numerical treatment of models which include microstructure. Leading scientists present their efforts involving mathematical analysis, numerical analysis, computational mechanics, material modelling and experiment. The mathematical analyses are based on methods from the calculus of variations, while in the numerical implementation global optimization algorithms play a central role. The modeling covers all length scales, from the atomic structure up to macroscopic samples. The development of the models ware guided by experiments on single and polycrystals and results will be checked against experimental data.
As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine “Kyiv Polytechnic Instituteâ€. The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine and the USA.
The book is focused on constitutive description of mechanical behaviour of engineering materials: both conventional (polycrystalline homogeneous isotropic or anisotropic metallic materials) and non-conventional (heterogeneous multicomponent anisotropic composite materials). Effective material properties at the macro-level depend on both the material microstructure (originally isotropic or anisotropic) as well as dissipative phenomena occurred on fabrication and consecutive loading phase (hardening) resulting in irreversible microstructure changes (acquired anisotropy). The material symmetry is a background and anisotropy is a core around which the book is formed. In this way a revision of classical rules of enhanced constitutive description of materials is required.
This volume presents a collection of contributions on materials modeling, which were written to celebrate the 65th birthday of Prof. Nobutada Ohno. The book follows Prof. Ohno’s scientific topics, starting with creep damage problems and ending with homogenization methods.
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics.
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers and Chapter 9, which addresses various perturbational aspects in contact problems and introduces the sensitivity of articular contact mechanics. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics, and engineers interested and involved in the analysis and design of thin-layer structures.
The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc. The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.
This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approachesâ€, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.
Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the esoteric, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. This book also examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications.
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 - 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book provides reviews of recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided for molecular dynamic simulations, fascinating nanoscale phenomena and remarkable new effects. It is of interest to a wide range of researchers and students.
This book provides an insight into current research topics, focusing special attention exactly on welding issues. The presented research work demonstrates that application of synchrotron and neutron radiation in combination with other techniques enables the basic understanding of material-related processes to be extended appreciably. It also shows ways of how to improve new materials and their use in industry. Following on from the 1st workshop in 2009 at BAM Berlin, a 2nd workshop dealing with this subject matter was held in 28-30 November, 2012 in Osaka/Japan with international participation of scientists from sixteen countries. The book includes selected contributions from the various subject blocks, precisely covering issues of practical and immediately implementable benefit to industrial enterprises. Therefore, peer-reviewed papers dealing with the following topics are contained as well: -Â Phase transformation during welding, metallurgy and material development -Â Evolution and significance of residual stresses -Â Investigations into laser and electron beam welding
Experimental and Applied Mechanics, Volume 6: Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, the sixth volume of eight from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Advances in Residual Stress Measurement Methods Residual Stress Effects on Material Performance Inverse Problems and Hybrid Techniques Thermoelastic Stress Analysis Infrared Techniques Research in Progress Applications in Experimental Mechanics
This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of "pocket book edition" of the entirety contact mechanics. Measurements of the rheology of bodies in contact as well as their surface topography and adhesive properties are the inputs of the calculations. In particular, it is possible to capture the entire dynamics of a system - beginning with the macroscopic, dynamic contact calculation all the way down to the influence of roughness - in a single numerical simulation model. Accordingly, MDR allows for the unification of the methods of solving contact problems on different scales. The goals of this book are on the one hand, to prove the applicability and reliability of the method and on the other hand, to explain its extremely simple application to those interested.
This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters are classified in the following sections: theoretical and numerical methods and tools for optimization (theoretical methods and tools; numerical methods and tools) and engineering design and societal applications (turbo machinery; structures, materials and civil engineering; aeronautics and astronautics; societal applications; electrical and electronics applications), focused particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.
MEMS and Nanotechnology, Volume 8: Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, the eighth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Small-Scale Plasticity MEMS and Electronic Packaging Mechanics of Graphene Interfacial Mechanics Methods in Measuring Small-Scale Displacements Organic and Inorganic Nanowires AFM and Resonant-Based Methods Thin Films and Nano fibers
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement - longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement - cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement - Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics - from the students at an advanced undergraduate and graduate level to the scientists, professionally interesting in waves. But mechanics is understood in the broad sense, when it includes mechanical and other engineering, material science, applied mathematics and physics and so forth. The genesis of this book can be found in author's years of research and teaching while a head of department at SP Timoshenko Institute of Mechanics (National Academy of Sciences of Ukraine), a member of Center for Micro and Nanomechanics at Engineering School of University of Aberdeen (Scotland) and a professor at Physical-Mathematical Faculty of National Technical University of Ukraine "KPI". The book comprises 11 chapters. Each chapter is complemented by exercises, which can be used for the next development of the theory of nonlinear waves.
This work deals with numerical simulations of fresh concrete flows. After the first introductory chapter dealing with the various physical phenomena involved in flows of fresh cementitious materials, the aim of the second chapter is to give an overview of the work carried out on simulation of flow of cement-based materials using computational fluid dynamics (CFD). This includes governing equations, constitutive equations, analytical and numerical solutions, and examples showing simulations of testing, mixing and castings. The third chapter focuses on the application of Discrete Element Method (DEM) in simulating the flow of fresh concrete. The fourth chapter is an introductory text about numerical errors both in CFD and DEM whereas the fifth and last chapter give some recent examples of numerical simulations developed by various authors in order to simulate the presence of grains or fibers in a non-Newtonian cement matrix. |
![]() ![]() You may like...
Embedded Systems Design Based on Formal…
Ivan Radojevic, Zoran Salcic
Hardcover
R2,877
Discovery Miles 28 770
Computational and Methodological…
Andriette Bekker, (Din) Ding-Geng Chen, …
Hardcover
R4,276
Discovery Miles 42 760
Analysis of Multinational Strategic…
Alan M. Rugman, Alain Verbeke
Hardcover
R4,891
Discovery Miles 48 910
Optimal Methods for Ill-Posed Problems…
Vitalii P Tanana, Anna I. Sidikova
Hardcover
R3,369
Discovery Miles 33 690
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,391
Discovery Miles 43 910
|