![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
Taking an engineering, rather than a mathematical, approach, Bounding uncertainty in Civil Engineering - Theoretical Background deals with the mathematical theories that use convex sets of probability distributions to describe the input data and/or the final response of systems. The particular point of view of the authors is centered on the applications to civil engineering problems, and the theory of random sets has been adopted as a basic and relatively simple model. However, the authors have tried to elucidate its connections to the more general theory of imprecise probabilities, Choquet capacities, fuzzy sets, p-boxes, convex sets of parametric probability distributions, and approximate reasoning both in one dimension and in several dimensions with associated joint spaces. If choosing the theory of random sets may lead to some loss of generality, it has, on the other hand, allowed for a self-contained selection of the topics and a more unified presentation of the theoretical contents and algorithms. With over 80 examples worked out step by step, the book should assist newcomers to the subject (who may otherwise find it difficult to navigate a vast and dispersed literature) in applying the techniques described to their own specific problems.
This book collects peer-reviewed lectures of the IUTAM Symposium on the 100th anniversary of Boundary Layer research. No other reference of this calibre, on this topic, is likely to be published for the next decade. Covers classification, definition and mathematics of boundary layers; instability of boundary layers and transition; boundary layers control; turbulent boundary layers; numerical treatment and boundary layer modelling; special effects in boundary layers.
Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards. Lead Free Solder: Mechanics and Reliability provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests.
Programming Finite Elements in Java (TM) teaches the reader how to programme the algorithms of the finite element method (FEM) in Java (TM). The compact, simple code helps the student to read the algorithms, to understand them and thus to be able to refine them. All of the main aspects of finite element techniques are considered: finite element solution; generation of finite element meshes; and visualization of finite element models and results with Java 3D (TM). The step-by-step presentation includes algorithm programming and code explanation at each point. Problems and exercises are provided for each chapter, with Java (TM) source code and problem data sets available from http://extras.springer.com/2010/978-1-84882-971-8.
The Third Conference on Applied Mathematics and Scienti?c Computing took place June 23-27, 2003 on island of Brijuni, Croatia. The main goal of the conference was to interchange ideas among applied mathematicians in the broadest sense both from and outside academia, as well as experts from other areas who apply different mathematical techniques. During the meeting there were invited and contributed talksand software presentations. Invited presentations were given by active researchers from the ?eldsof approximation theory, numerical methods for differential equations and numericallinear algebra. These proceedings contain research and review papers by invited speakers and selected contributed papers from the ?elds of applied and numerical mathematics. A particular aim of the conference was to encourage young scientists to present results of their research. Traditionally, the best presentation given by PhD student was rewarded. This year awardee was Luka Grubisi ? c ' (University of Hagen, Hagen, Germany) and we congratulate him for this achievement. It would be hard to organize the conference without generous support of the Croatian Ministry of Science and Technology and we acknowledge it. We are also indebted to themainorganizer, Department of Mathematics, University of Zagreb.Motivating beautiful nature should bealso mentioned.And,attheend, we are thankful to Drs. JosipTambaca ? and Ivica Nakic ' for giving this book its ?nal shape.
MEMS and Nanotechnology, Volume 6: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics represents one of seven volumes of technical papers presented at the Society for Experimental Mechanics SEM 12th International Congress & Exposition on Experimental and Applied Mechanics, held at Costa Mesa, California, June 11-14, 2012. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Imaging Methods for Novel Materials and Challenging Applications, Experimental and Applied Mechanics, Mechanics of Biological Systems and Materials and, Composite Materials and Joining Technologies for Composites.
Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
Cementitious materials, rocks and fibre-reinforced composites commonly termed as quasibrittle, need a different fracture mechanics approach to model the crack propagation study because of the presence of significant size of fracture process zone ahead of the crack-tip. Recent studies show that concrete structures manifest three important stages in fracture process: crack initiation, stable crack propagation and unstable fracture or failure. Fracture Mechanics concept can better explain the above various stages including the concepts of ductility, size-effect, strain softening and post-cracking behavior of concrete and concrete structures. The book presents a basic introduction on the various nonlinear concrete fracture models considering the respective fracture parameters. To this end, a thorough state-of-the-art review on various aspects of the material behavior and development of different concrete fracture models is presented. The development of cohesive crack model for standard test geometries using commonly used softening functions is shown and extensive studies on the behavior of cohesive crack fracture parameters are also carried out. The subsequent chapter contains the extensive study on the double-K and double-G fracture parameters in which some recent developments on the related fracture parameters are illustrated including introduction of weight function method to Double-K Fracture Model and formulization of size-effect behavior of the double-K fracture parameters. The application of weight function approach for determining of the KR-curve associated with cohesive stress distribution in the fracture process zone is also presented. Available test data are used to validate the new approach. Further, effect of specimen geometry, loading condition, size-effect and softening function on various fracture parameters is investigated. Towards the end, a comparative study between different fracture parameters obtained from various models is presented.
Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author's research group over the past forty years at the Chinese Academy of Sciences. The book is intended for research scientists and engineers working in the fields of physics and engineering, as well as graduate students and advanced undergraduates of the related fields. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China.
This book describes most recent advances and limitations concerning design of adhesive joints under humid conditions and discusses future trends. It presents new approaches to predict the failure load after exposure to load, temperature and humidity over a long period of time. With the rapid increase in numerical computing power there have been attempts to formalize the different environmental contributions in order to provide a procedure to predict assembly durability, based on an initial identification of diffusion coefficients and mechanical parameters for both the adhesive and the interface. A coupled numerical model for the joint of interest is then constructed and this allows local water content to be defined and resulting changes in adhesive and interface properties to be predicted.
This concise work provides a general introduction to the design of buildings which must be resistant to the effect of earthquakes. A major part of this design involves the building structure which has a primary role in preventing serious damage or structural collapse. Much of the material presented in this book examines building structures. Due to the recent discovery of vertical components, it examines not only the resistance to lateral forces but also analyses the disastrous influence of vertical components. The work is written for Practicing Civil, Structural, and Mechanical Engineers, Seismologists and Geoscientists. It serves as a knowledge source for graduate students and their instructors.
One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. These are peer-reviewed proceedings of the workshop affiliated to a major international research conference (Medical Image Computing and Computer Assisted Intervention MICCAI 2010 in Beijing) dedicated to research in the field of medical image computing and computer assisted medical interventions. The list of subjects covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, medical robotics.
The ?eld of geosciences is full of scienti?c fascination and questions that are crucial for humanity. Our ?uid environment (the atmosphere, oceans, rivers, etc. ) is responsible for climate, hurricanes, ?oods and other phen- ena characterised by rapid changes. These have to be contrasted with the permanence of our solid underground made of soil, rock, ice and snow. H- ever, this permanence is only apparent as shown for example by earthquakes and landslides, but also by a number of other processes of deformation. Such processes are nowadays of high importance whenever we look to the future (think for example of disposal of radioactive waste or carbon dioxide) or to the past (prospectionof oil,gasand ore). But also shortrangeextrapolations are important if we look e. g. at the prediction and mitigation of landslides or the foundation of oil and gas production plants o?shore or on glaciers. Geosciences are pronouncedly multidisciplinary as they comprise perhaps the most widespread collection of disciplines, such as geology, geophysics, physics, geochemistry, geography, geotechnical and geoenvironmental en- neering, Unfor petroleum engineering, soil mechanics and rock mechanics- tunately, often these disciplines operate rather independent of each other andthe increasing quest for transdisciplinary exchange is inhibited by the di?erentlanguages and views prevailing in the various disciplines. It appears thus that mechanics could o?er a substantial link across d- ciplines, at least with respect to geotechnical engineering and geology.
This book investigates stability loss problems of the viscoelastic composite materials and structural members within the framework of the Three-Dimensional Linearized Theory of Stability (TDLTS). The stability loss problems are considered the development of the initial infinitesimal imperfection in the structure of the material or of the structural members. This development is studied within the framework of the Three-Dimensional Geometrical Non-Linear Theory of the Deformable Solid Body Mechanics. The solution to the corresponding boundary-value problems is presented in the series form in the small parameter which characterizes the degree of the initial imperfection. In this way, the nonlinear problems for the domains bounded by noncanonical surfaces are reduced for the same nonlinear problem for the corresponding domains bounded by canonical surfaces and the series subsequent linearized problems. It is proven that the equations and relations of these linearized problems coincide with the corresponding ones of the well-known TDLTS. Under concrete investigations as stability loss criterion the case is taken for the initial infinitesimal imperfection that starts to increase indefinitely. Moreover, it is proven that the critical parameters can be determined by the use of only the zeroth and first approximations.
This book elucidates how Finite Element methods look like from the perspective of Green's functions, and shows new insights into the mathematical theory of Finite Elements. Practically, this new view on Finite Elements enables the reader to better assess solutions of standard programs and to find better model of a given problem. The book systematically introduces the basic concepts how Finite Elements fulfill the strategy of Green's functions and how approximating of Green's functions. It discusses in detail the discretization error and shows that are coherent with the strategy of "goal oriented refinement". The book also gives much attention to the dependencies of FE solutions from the parameter set of the model.
arranged. Among them the following types are met: nanotubes, nanop- ticles, nanopowders, nano?bers, nanowires, nanocomposites, etc. * At the microscale - Microcomposites, such as metal matrix composites (MMCs), ceramic matrix composites (CMCs), alloys or superalloys, s- tered powders, ceramic materials, magnetorheological ?uids (MRFs), etc. * At the macroscale - Macrocomposites, such as functionally graded ma- rials (FGMs), thin layers or ?lms, thermal or oxidation or wear resistant coatings, multilayered structures, long ?ber composites, etc. At each level of analysis a response of the material to any physical excitation may be observed, measured and analyzed. In the sense of innovation of a material, the changes or new ideas can be introduced on the same scale of control (say, atomic or nano) in order to achieve fundamentally new behavior on the other scale of observation (say, micro or macro). For instance, by replacing some similar atoms in the metal crystal str- ture (e. g. Ti-Ti or Al-Al), by unlike atoms in the crystal (e. g. Ti-Al), wi- out the lattice symmetry of the original material changing, new improved properties and characteristics may be observed in intermetallics at the - cro or macroscale (higher speci?c strength, better creep resistance at elevated temperatures, better corrosion resistance, to mention only some properties observed at the macroscale). Similarly, changing material characteristics at the nanoscale, enables creation of completely new material functionality at micro or macroscales (e. g.
The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The current volume presents the state of the art research in this field. The contributions cover all the aspects of the novel composite systems, i.e. modeling from nano to macro scale, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as the capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospace composites.
Until now the important concept of quantum chaos has remained somewhat ill defined. This volume tackles the ubiquitous borderline between classical andquantum mechanics, studying in particular the semiclassical limit of chaotic systems. The effects of disorder from dynamics and their relation to stochastic systems, quantum coherence effects in mesoscopic systems, and the relevant theoretical approaches are fruitfully combined in this volume. The major paradigms of what is called quantum chaos, random matrix theory and applications to condensed matter and nuclear physics are presented. Detailed discussions of experimental work with particular emphasis on atomic physics are included. The book is highly recommended for graduate-student seminars.
There have been considerable advances in recent times in understanding many common material processes that are of practical importance, such as nonlinear response, fracture, breakdown, earthquakes, packing, and granular flow, that are of immense practical importance. This has been mainly due to new applications of statistical physics, including percolation theory, fractal concepts and self-organized criticality. This collection of articles brings together research in those closely allied fields. It deals with problems in material science involving random geometries and nonlinearity at a mesoscopic scale, where local disorder and nonlinearity influence the global behaviour of cracks, for example, and problems where randomness in time evolution is as crucial as the geometry itself.
Edited on the occasion of Prof. Olgierd C. Zienkiewicz' 70th birthday, this book contains original contributions from eminent scientists dealing with a wide range of theoretical aspects of the Finite Element Method and its application to a variety of engineering problems. The book provides an overview of the state-of-the-art of finite element technology in the last decade of the 20th century.
Berthold Heinrich stellt in diesem Essential die fünf Begriffe Kraft, Arbeit, Leistung, Wirkungsgrad und Energie im Zusammenhang dar, um damit Hilfen für eine sachgerechte Verwendung dieser im allgemeinen Sprachgebrauch oft falsch benutzten Bezeichnungen zu bieten. Neben den Definitionen werden viele durchgerechnete Beispiele vorgestellt, um die Anwendung der Begriffe in Physik und Technik zu verdeutlichen. Viele der hier verwendeten Beispiele können direkt sinngemäß auf andere Problemstellungen angewandt werden. Anschauliche Grafiken erleichtern das Verständnis.
The micro- and nano-modification of infrastructure materials and the associated multi-scale characterization and simulation has the potential to open up whole new uses and classes of materials, with wide-ranging implications for society. The use of multi-scale characterization and simulation brings the ability to target changes at the very small scale that predictably effect the bulk behavior of the material and thus allowing for the optimization of material behavior and performance. The International RILEM Symposium on Multi-Scale Modeling and Characterization of Infrastructure Materials (Stockholm, June 10-12, 2013) brought together key researchers from around the world to present their findings and ongoing research in this field in a focused environment with extended discussion times. From asphalt to concrete, from chemistry to mechanics, from nano- to macro-scale: the collection of topics covered by the Symposium represents the width and depth of the currently ongoing efforts of developing more sustainable infrastructure materials. Researchers, practitioners, undergraduates and graduate students engaged in infrastructure materials or multi-scale characterization and modeling efforts can use this book as a comprehensive reference, to learn about the currently ongoing research efforts in this field or as an inspiration for new research ideas to enhance the long-term performance of infrastructure materials from a fundamental perspective. The Symposium was held under the auspices of the RILEM Technical Committee on Nanotechnology-Based Bituminous Materials 231-NBM and the Transport Research Board (TRB) Technical Committee on Characteristics of Asphalt Materials AFK20.
Introduction to the Mechanics of Deformable Solids: Bars and Beams introduces the theory of beams and bars, including axial, torsion, and bending loading and analysis of bars that are subjected to combined loadings, including resulting complex stress states using Mohr's circle. The book provides failure analysis based on maximum stress criteria and introduces design using models developed in the text. Throughout the book, the author emphasizes fundamentals, including consistent mathematical notation. The author also presents the fundamentals of the mechanics of solids in such a way that the beginning student is able to progress directly to a follow-up course that utilizes two- and three-dimensional finite element codes imbedded within modern software packages for structural design purposes. As such, excessive details included in the previous generation of textbooks on the subject are obviated due to their obsolescence with the availability of today's finite element software packages.
The 2002 Spring Meeting of the "Deutsche Physikalische Gesellschaft" was held in Regensburg from March 25th to 29th, 2002. The number of conference attendees has remained remarkably stable at about 2800, despite the decreas ing number of German PhD students. This can be taken as an indication that the program of the meeting was very attractive. The present volume of the "Advances in Solid State Physics" contains the written versions of most of the invited talks, also those presented as part of the Symposia. Most of these Symposia were organized by several divisions in collaboration and they covered fascinating selection of topics of current interest. I trust that the book reflects this year's status of the field in Germany. In particular, one notes a slight change in paradigms: from quantum dots and wires to spin transport and soft matter systems in the broadest sense. This seems to reflect the present general trend in physics. Nevertheless, a large portion of the invited papers as well as the discussions at the meeting concentrated on nanostrnctured matter.
The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years. This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a different and more modern approach. It is however unique by the inclusion of an extensive chapter on mechanical behavior in the micron and submicron/nanometer range. Mechanical deformation phenomena are explained and often related to the presence of dislocations in structures. Many practical illustrations are provided representing various observations encountered in actual structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included to provide a broad basis for further studying the subject. |
You may like...
Traffic-Free Cycle Trails South East…
Nick Cotton, Kathy Rogers
Paperback
R493
Discovery Miles 4 930
China Satellite Navigation Conference…
Changfeng Yang, Jun Xie
Hardcover
R7,103
Discovery Miles 71 030
|