![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
Common engineering materials reach in many demanding applications such as automotive or aerospace their limits and new developments are required to ful ll increasing demands on performance and characteristics. The properties of ma- rials can be increased for example by combining different materials to achieve better properties than a single constituent or by shaping the material or c- stituents in a speci c structure. Many of these new materials reveal a much more complex behavior than traditional engineering materials due to their advanced str- ture or composition. Furthermore, the classical applications of many engineering materials are extended to new ranges of applications and to more demanding en- ronmental conditions such as elevated temperatures. All these tendencies require in addition to the synthesis of new materials, proper methods for their m- ufacturing and extensive programs for their characterization. In many elds of application, the development of new methods and processes must be acc- plished by accurate and reliable modeling and simulation techniques. Only the interaction between these new developments with regards to manufacturing, m- eling, characterization, further processing and monitoring of materials will allow to meet all demands and to introduce these developments in safety-relevant applications. The 3rd International Conference on Advanced Computational Engineering and Experimenting, ACE-X 2009, was held in Rome, Italy, from 22 to 23 June 2009 with a strong focus on the above mentioned developments.
Written by leading experts in their respective fields,
Solidification and Casting provides a comprehensive review of
topics fundamental to metallurgy and materials science as well as
indicates recent trends.
High temperature superconducting theory drew controversy after the discovery of superconductors at close to room temperatures. However, a consistent microscopic theory of HT superconductivity based on bipolaron mechanism leads to a better understanding of microscopic and macroscopic description. By presenting aspects of superconductivity now joined in a strict theory rather than separate models this work is especially useful for graduate students.
This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic.
This book provides an overview of the current of the state of the art in the multiscale mechanics of solids and structures. It comprehensively discusses new materials, including theoretical and experimental investigations their durability and strength, as well as fractures and damage
This book reviews the mathematical modeling and experimental study of systems involving two or more different length scales. The effects of phenomena occurring at the lower length scales on the behavior at higher scales are of intrinsic scientific interest, but can also be very effectively used to determine the behavior at higher length scales or at the macro-level. Efforts to exploit this micro- and macro-coupling are, naturally, being pursued with regard to every aspect of mechanical phenomena. This book focuses on the changes imposed on the dynamics, strength of materials and durability of mechanical systems by related multiscale phenomena. In particular, it addresses: 1: the impacts of effective dissipation due to kinetic energy trapped at lower scales 2: wave propagation in generalized continua 3: nonlinear phenomena in metamaterials 4: the formalization of more general models to describe the exotic behavior of meta-materials 5: the design and study of microstructures aimed at increasing the toughness and durability of novel materials
< div="" style="">This fourth edition focuses on the basics and advanced topics in strength of materials. This is an essential guide to students, as several chapters have been rewritten and their scope has expanded. Four new chapters highlighting combined loadings, unsymmetrical bending and shear centre, fixed beams, and rotating rings, discs and cylinders have been added. New solved examples, multiple choice questions and short answer questions have been added to augment learning. The entire text has been thoroughly revised and updated to eliminate the possible errors left out in the previous editions of the book. This textbook is ideal for the students of Mechanical and Civil Engineering. ^
This book shows in a comprehensive presentation how Bond Graph methodology can support model-based control, model-based fault diagnosis, fault accommodation, and failure prognosis by reviewing the state-of-the-art, presenting a hybrid integrated approach to Bond Graph model-based fault diagnosis and failure prognosis, and by providing a review of software that can be used for these tasks. The structured text illustrates on numerous small examples how the computational structure superimposed on an acausal bond graph can be exploited to check for control properties such as structural observability and control lability, perform parameter estimation and fault detection and isolation, provide discrete values of an unknown degradation trend at sample points, and develop an inverse model for fault accommodation. The comprehensive presentation also covers failure prognosis based on continuous state estimation by means of filters or time series forecasting. This book has been written for students specializing in the overlap of engineering and computer science as well as for researchers, and for engineers in industry working with modelling, simulation, control, fault diagnosis, and failure prognosis in various application fields and who might be interested to see how bond graph modelling can support their work. Presents a hybrid model-based, data-driven approach to failure prognosis Highlights synergies and relations between fault diagnosis and failure prognostic Discusses the importance of fault diagnosis and failure prognostic in various fields
In this book, the authors use molecular dynamics simulations to conduct a comprehensive study of the compression/superheating limit and phase transition of 2D (monolayer, bilayer, and trilayer) water/ice constrained in graphene nanocapillaries. When subjected to nanoscale confinement and under ultrahigh pressure, water and ice behave quite differently than their bulk counterparts, partly because the van der Waals pressure can spark a water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquids. From a mechanical standpoint, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of 2D water. The findings presented here could help us to better understand the phase behavior of 2D confined water/ice.
This highly practical reference presents for the first time in a single volume all types of environmental degradation a metallic compound may undergo during its processing, storage, and service. Clarifying general and localized corrosion effects, Environmental Degradation of Metals describes the effects of atmospheric exposure, high-temperature gases, soil, water, weak and strong chemicals, liquid metals, and nuclear radiation. It determines whether corrosion can occur under a given set of conditions, shows how improvements in component design can reduce corrosion, and details the high- and low-temperature effects of oxidizing agents. The book also investigates the instantaneous and delayed failure of solid metal in contact with liquid metal, highlights the influence of hydrogen on metal, and profiles radiation effects on metal.
This book gathers the peer-reviewed proceedings of the 14th International Symposium, PRADS 2019, held in Yokohama, Japan, in September 2019. It brings together naval architects, engineers, academic researchers and professionals who are involved in ships and other floating structures to share the latest research advances in the field. The contents cover a broad range of topics, including design synthesis for ships and floating systems, production, hydrodynamics, and structures and materials. Reflecting the latest advances, the book will be of interest to researchers and practitioners alike.
This book gathers the peer-reviewed proceedings of the 14th International Symposium, PRADS 2019, held in Yokohama, Japan, in September 2019. It brings together naval architects, engineers, academic researchers and professionals who are involved in ships and other floating structures to share the latest research advances in the field. The contents cover a broad range of topics, including design synthesis for ships and floating systems, production, hydrodynamics, and structures and materials. Reflecting the latest advances, the book will be of interest to researchers and practitioners alike.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 9th conference "Modern Engineering: Science and Education", held at the Peter the Great Saint Petersburg Polytechnic University in June 2020 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the sixth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Health Monitoring, including papers on: Novel Techniques Optical Methods, Scanning LDV Methods Photogrammetry & DIC Rotating Machinery
This book comprises select proceedings of the National Conference on Advances in Structural Technology (CoAST 2019). It brings together different applied and technological aspects of structural engineering. The main topics covered in this book include solid mechanics, composite structures, fluid-structure interaction, soil-structure interaction, structural safety, and structural health monitoring. The book also focuses on emerging structural materials and the different behavior of civil, mechanical, and aerospace structural systems. Given its contents, this book will be a useful reference for researchers and practitioners working in structural safety and engineering.
This book offers a clear and comprehensive overview of both the theory and application of fundamental aspects of concrete-filled double steel tubes (CFDST). Many analysis and design applications are presented, which involve mechanical components and structural members often encountered in engineering practice. This monograph is written for practicing structural and civil engineers, students, and academic researchers who want to keep up to speed on the latest technologies for concrete-filled steel tube (CFST).
Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the third volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on:Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty
This book covers different topics of nonlinear mechanics in complex structures, such as the appearance of new nonlinear phenomena and the behavior of finite-dimensional and distributed nonlinear systems, including numerous systems directly connected with important technological problems.
This book introduces the engineering application of the discrete element method (DEM), especially the simulation analysis of the typical equipment (scraper conveyor, coal silos, subsoiler) in the coal and agricultural machinery. In this book, the DEM is applied to build rigid and loose coupling model, and the kinematic effect of the bulk materials, the mechanical effect of the interaction between the bulk materials, and the mechanical equipment in the operation process of the relevant equipment are studied. On this basis, the optimization design strategy of the relevant structure is proposed. This book effectively promotes the application of DEM in engineering, analyzes the operation state, failure mechanism, and operation effect of related equipment in operation, and provides theoretical basis for the optimal design of equipment. The book is intended for undergraduate and graduate students who are interested in mechanical engineering, researchers investigating coal and agricultural machinery, and engineers working on designing related equipments.
This is the first book presenting dynamic responses and failure of polymer composite structures as they interact with internal and/or external fluid media. It summarizes authoritative research carried out by the author in the past decade on various aspects of Fluid-Structure Interaction (FSI) to present important effects of FSI on composite structures. The topics include impact loading on composite structures with air-back, water-back, or containing water; FSI effects on frequencies, mode shapes, and modal curvatures; cyclic loading for fatigue failure with FSI; coupling of independent composite structures by fluid media; and moving composite structures in water. Numerical techniques for FSI are also presented. Research was conducted both experimentally and numerically to complement each other. The book offers a timely, comprehensive information to fluid-structure interaction of composite structures for students, researchers or practicing engineers.
Nonlinear Structures & Systems, Volume 1: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the first volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear Reduced-order Modeling Jointed Structures: Identification, Mechanics, Dynamics Experimental Nonlinear Dynamics Nonlinear Model & Modal Interactions Nonlinear Damping Nonlinear Modeling & Simulation Nonlinearity & System Identification
This book focuses on the need for an Eulerian formulation of constitutive equations. After introducing tensor analysis using both index and direct notation, nonlinear kinematics of continua is presented. The balance laws of the purely mechanical theory are discussed along with restrictions on constitutive equations due to superposed rigid body motion. The balance laws of the thermomechanical theory are discussed and specific constitutive equations are presented for: hyperelastic materials; elastic-inelastic materials; thermoelastic-inelastic materials with application to shock waves; thermoelastic-inelastic porous materials; and thermoelastic-inelastic growing biological tissues.
This book provides a systematic and comprehensive interdisciplinary overview of ductile mode cutting of brittle materials, covering a range of topics from the fundamental physics to engineering practices. Discussing the machining mechanics and material properties, it explains the fundamental mechanism of ductile-to-brittle transition in the cutting of brittle materials. It also presents theoretical modeling and molecular dynamic simulation to demonstrate that ductile mode cutting can be achieved under certain conditions, as well as extensive experimental studies that produced smooth and damage-free surfaces on different materials, such as silicon, glass, tungsten carbide and calcium fluoride. Lastly, it explores how the ductile mode cutting performance and machinability of brittle materials can be further improved by hybrid machining processes like ultrasonic vibration and thermal-assisted cutting technologies in order to meet industry demands. |
![]() ![]() You may like...
A Caterpillar at the Dentist
Shweta Ujaoney, Kelly O' Neill
Hardcover
Nanotechnology for Energy and Water…
Gagan Anand, Jitendra K. Pandey, …
Hardcover
|