![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book seeks to comprehensively cover recent progress in computational fluid dynamics and nonlinear science and its applications to MHD and FHD nanofluid flow and heat transfer. The book will be a valuable reference source to researchers in various fields, including materials science, nanotechnology, mathematics, physics, information science, engineering and medicine, seeing to understand the impact of external magnetic fields on the hydrothermal behavior of nanofluids in order to solve a wide variety of theoretical and practical problems.
This textbook explores the theory of Cosserat continuum mechanics, and covers fundamental tools, general laws and major models, as well as applications to the mechanics of granular media. While classical continuum mechanics is based on the axiom that the stress tensor is symmetric, theories such as that expressed in the seminal work of the brothers Eugene and Francois Cosserat are characterized by a non-symmetric stress tensor. The use of von Mises motor mechanics is introduced, for the compact mathematical description of the mechanics and statics of Cosserat continua, as the Cosserat continuum is a manifold of oriented "rigid particles" with 3 dofs of displacement and 3 dofs of rotation, rather than a manifold of points with 3 dofs of displacement. Here, the analysis is restricted to infinitesimal particle displacements and rotations. This book is intended as a valuable supplement to standard Continuum Mechanics courses, and graduate students as well as researchers in mechanics and applied mathematics will benefit from its self-contained text, which is enriched by numerous examples and exercises.
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
This book presents 50 selected peer-reviewed reports from the 2016 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2016 (Surabaya, Indonesia, 19-22 July, 2016). The Proceedings are devoted to processing techniques, physics, mechanics, and applications of advanced materials. As such, they examine a wide spectrum of nanostructures, ferroelectric crystals, materials and composites, as well as other promising materials with special properties. They present nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques, and physical and mechanical studies of the structural and physical-mechanical properties of the materials discussed. Further, a broad range of original mathematical and numerical methods is applied to solve various technological, mechanical and physical problems, which are inte resting for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc., which show improved characteristics, defined by the developed materials and composites, opening new possibilities to study different physico-mechanical processes and phenomena.
This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic.
Concrete is still the most widely used construction material since it has the lowest ratio between cost and strength as compared to other available materials. However, it has two undesirable properties, namely: low tensile strength and large brittleness that cause the collapse to occur shortly after the formation of the first crack. To improve these two negative properties and to achieve a partial substitute of conventional reinforcement, an addition of short discontinuous randomly oriented steel fibres can be practiced among others. In spite of positive properties, fibrous concrete did not find such acknowledgment and application as usual concrete. There do not still exist consistent dimensioning rules due to the lack sufficient large-scale static and dynamic experiments taking into account the effect of the fibre orientation. The intention of the book is twofold: first to summarize the most important mechanical and physical properties of steel-fibre-added concrete and reinforced concrete on the basis of numerous experiments described in the scientific literature, and second to describe a quasi-static fracture process at meso-scale both in plain concrete and fibrous concrete using a novel discrete lattice model. In 2D and 3D simulations of fibrous concrete specimens under uniaxial tension, the effect of the fibre volume, fibre distribution, fibre orientation, fibre length, fibrous bond strength and specimen size on both the stress-strain curve and fracture process was carefully analyzed.
This book presents selected papers from the 7th International Congress on Computational Mechanics and Simulation, held at IIT Mandi, India. The papers discuss the development of mathematical models representing physical phenomena and apply modern computing methods to analyze a broad range of applications including civil, offshore, aerospace, automotive, naval and nuclear structures. Special emphasis is given on simulation of structural response under extreme loading such as earthquake, blast etc. The book is of interest to researchers and academics from civil engineering, mechanical engineering, aerospace engineering, materials engineering/science, physics, mathematics and other disciplines.
This is the first book presenting dynamic responses and failure of polymer composite structures as they interact with internal and/or external fluid media. It summarizes authoritative research carried out by the author in the past decade on various aspects of Fluid-Structure Interaction (FSI) to present important effects of FSI on composite structures. The topics include impact loading on composite structures with air-back, water-back, or containing water; FSI effects on frequencies, mode shapes, and modal curvatures; cyclic loading for fatigue failure with FSI; coupling of independent composite structures by fluid media; and moving composite structures in water. Numerical techniques for FSI are also presented. Research was conducted both experimentally and numerically to complement each other. The book offers a timely, comprehensive information to fluid-structure interaction of composite structures for students, researchers or practicing engineers.
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems. "
This book discusses several mechanical and material problems that are typical for gas turbine components. It discusses accelerated tests and other methods for increasing the reliability of gas turbine engines. Special attention is given to non-traditional methods for calculating the strength characteristics and longevity of the main components. This first volume focuses on the selection of materials, deformation and destruction mechanisms in connection with stationary and non-stationary loading, and types of material damage such as the thermal fatigue. Particular attention is paid to the issues of the properties of single crystal alloys, the relationship between structure and properties, the influence of technological factors and long-term operation. The characteristics of creep resistance, crack resistance, and resistance to cyclic deformation of different alloys are given.
This book discusses the conceptual theory of structural dynamics, using simplified methods and clear, concise explanations. It illustrates all the hypotheses in a simple and effective way and describes in detail the derivation of all related formulations. Further, comprehensive step-by-step explanations combined with conceptual derivations, drawings and figures allow readers to grasp all the analytical formulations related to the dynamics of structures. Covering free and forced vibrations of single- and multi-degree of freedom systems represented as structure, subjected to dynamic load, the book also explores the most common types of dynamic loads applicable to structures, such as harmonic loads, impact loads and earthquakes, presenting relevant details, derivations and effective problems to explain the concept for various conditions. In addition, each chapter provides examples at different levels to help students, researchers and engineers gain a better understanding of the topics better, and includes numerous real-world problems to familiarize readers with the challenges related to structural engineering.
The book gathers the peer-reviewed contributions presented at the 3rd International Conference on Application of Superabsorbent Polymers (SAP) and Other New Admixtures towards Smart Concrete, held in Skukuza, South Africa, on November 25-27, 2019. It features papers focusing on the behavior of SAP in concrete (in particular the absorption behavior) as well as the effect of SAP on fresh and hardened concrete properties. It also covers topics such as other modern admixtures, in particular rheology-modifying admixtures, including the recently emerging field of bio- or waste-derived admixtures. The conference builds on the experience and summarizes the activities of the RILEM Technical Committee 260-RSC "Recommendations for Use of Superabsorbent Polymers in Concrete Construction" and addresses other prominent research activities in the field of concrete admixtures.
This book highlights the mathematical models and solutions of the generalized dynamics of soft-matter quasicrystals (SMQ) and introduces possible applications of the theory and methods. Based on the theory of quasiperiodic symmetry and symmetry breaking, the book treats the dynamics of individual quasicrystal systems by reducing them to nonlinear partial differential equations and then provides methods for solving the initial-boundary value problems in these equations. The solutions obtained demonstrate the distribution, deformation and motion of SMQ and determine the stress, velocity and displacement fields. The interactions between phonons, phasons and fluid phonons are discussed in some fundamental materials samples. The reader benefits from a detailed comparison of the mathematical solutions for both solid and soft-matter quasicrystals, gaining a deeper understanding of the universal properties of SMQ. The second edition covers the latest research progress on quasicrystals in topics such as thermodynamic stability, three-dimensional problems and solutions, rupture theory, and the photonic band-gap and its applications. These novel chapters make the book an even more useful and comprehensive reference guide for researchers in condensed matter physics, chemistry and materials sciences.
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the "Age of reason" and next the "Birth of the modern world". The emphasis is rightly placed on the original contributions from the "Continental" scientists (the Bernoulli family, Euler, d'Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: "Continuum Mechanics through the Twentieth Century", Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author's experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.
The micro- and nano-modification of infrastructure materials and the associated multi-scale characterization and simulation has the potential to open up whole new uses and classes of materials, with wide-ranging implications for society. The use of multi-scale characterization and simulation brings the ability to target changes at the very small scale that predictably effect the bulk behavior of the material and thus allowing for the optimization of material behavior and performance. The International RILEM Symposium on Multi-Scale Modeling and Characterization of Infrastructure Materials (Stockholm, June 10-12, 2013) brought together key researchers from around the world to present their findings and ongoing research in this field in a focused environment with extended discussion times. From asphalt to concrete, from chemistry to mechanics, from nano- to macro-scale: the collection of topics covered by the Symposium represents the width and depth of the currently ongoing efforts of developing more sustainable infrastructure materials. Researchers, practitioners, undergraduates and graduate students engaged in infrastructure materials or multi-scale characterization and modeling efforts can use this book as a comprehensive reference, to learn about the currently ongoing research efforts in this field or as an inspiration for new research ideas to enhance the long-term performance of infrastructure materials from a fundamental perspective. The Symposium was held under the auspices of the RILEM Technical Committee on Nanotechnology-Based Bituminous Materials 231-NBM and the Transport Research Board (TRB) Technical Committee on Characteristics of Asphalt Materials AFK20.
This monograph disentangles the law of motive force, a fundamental law of nature that can be accommodated as an addition to the existing laws of thermodynamics. This unmistakable and remarkable tendency of nature is equally applicable to all other branches of studies. The law of motive force was discovered in 1989 by the author of this book, Professor Pramanick, who reports here various applications of the law in the area ofthermodynamics, heat transfer, fluid mechanics and solid mechanics and shows how, by applying the law of motive force, it is possible to solve analytically century old unsolved problems. This book offers a comprehensive account of the law of motive force and its relation to other laws and principles such as the generalized conservation principle, variational formulation, Fermat s principle, Bejan s constructal law, entropy generation minimization, Bejan s method of intersecting asymptotes and equipartition principle. Furthermore, the author addresses here some interrelated fundamental problems of contemporary interest, especially to thermodynamicists and provides exact solutions to these problems, by combining analytical methods, physical reasoning and the proposed law of motive force. This book is a must-read for both students and researchers in exact as well as non-exact sciences and at the same time, a pleasant learning experience for any novice. The first chapter proposes the law of motive force and establishes its relation to the other laws and principles such as the generalized conservation principle, variational formulation, Fermat s principle, Bejan s constructal law, entropy generation minimization, Bejan s method of intersecting asymptotes and equipartition principle. The second chapter presents Schmidt s intuitive criterion for fin design by employing the law of motive force alone. The third chapter provides an elegant solution to a classically unsolved fundamental issue of thermal science, the generalization of Pohlhausen s problem of heat transfer from a flat plate, by applying the law of motive force. The fourth chapter is a theoretical excursus of hydraulic jump for the first time deploying the law of motive force. The fifth chapter inculcates the law of motive force to establish the dendritic structure of nature with reference to a thermoelectric device. In the light of law of motive force the sixth and last chapter finally integrates finite-time thermodynamics with Bejan s constructal law.
This book comprises select proceedings of the National Conference on Advances in Structural Technology (CoAST 2019). It brings together different applied and technological aspects of structural engineering. The main topics covered in this book include solid mechanics, composite structures, fluid-structure interaction, soil-structure interaction, structural safety, and structural health monitoring. The book also focuses on emerging structural materials and the different behavior of civil, mechanical, and aerospace structural systems. Given its contents, this book will be a useful reference for researchers and practitioners working in structural safety and engineering.
This book offers a comprehensive and timely review of the fracture behavior of bimaterial composites consisting of periodically connected components, i.e. of bimaterial composites possessing periodical cracks along the interface. It first presents an overview of the literature, and then analyzes the isotropic, anisotropic and piezoelectric/dielectric properties of bimaterial components, gradually increasing the difficulty of the solutions discussed up to the coupled electromechanical problems. While in the case of isotropic and anisotropic materials it covers the problems generated by an arbitrary set of cracks, for the piezoelectric materials it focuses on studying the influence of the electric permittivity of the crack's filler, using not only a simple, fully electrically permeable model, but also a physically realistic, semi-permeable model. Throughout the analyses, the effects of the contact of the crack faces are taken into account so as to exclude the physically unrealistic interpenetration of the composite components that are typical of the classical open model. Further, the book derives and examines the mechanical and electromechanical fields, stress and electric intensity factors in detail. Providing extensive information on the fracture processes taking place in composite materials, the book helps readers become familiar with mathematical methods of complex function theory for obtaining exact analytical solutions.
This book presents the theoretical concepts of stress and strain, as well as the strengthening and fracture mechanisms of engineering materials in an accessible level for non-expert readers, but without losing scientific rigor. This volume fills the gap between the specialized books on mechanical behavior, physical metallurgy and material science and engineering books on strength of materials, structural design and materials failure. Therefore it is intended for college students and practicing engineers that are learning for the first time the mechanical behavior and failure of engineering materials or wish to deepen their understanding on these topics. The book includes specific topics seldom covered in other books, such as: how to determine a state of stress, the relation between stress definition and mechanical design, or the theory behind the methods included in industrial standards to assess defects or to determine fatigue life. The emphasis is put into the link between scientific knowledge and practical applications, including solved problems of the main topics, such as stress and strain calculation. Mohr's Circle, yield criteria, fracture mechanics, fatigue and creep life prediction. The volume covers both the original findings in the field of mechanical behavior of engineering materials, and the most recent and widely accepted theories and techniques applied to this topic. At the beginning of some selected topics that by the author's judgement are transcendental for this field of study, the prime references are given, as well as a brief biographical semblance of those who were the pioneers or original contributors. Finally, the intention of this book is to be a textbook for undergraduate and graduate courses on Mechanical Behavior, Mechanical Metallurgy and Materials Science, as well as a consulting and/or training material for practicing engineers in industry that deal with mechanical design, materials selection, material processing, structural integrity assessment, and for researchers that incursion for the first time in the topics covered in this book.
This book gives Abaqus users who make use of finite-element models in academic or practitioner-based research the in-depth program knowledge that allows them to debug a structural analysis model. The book provides many methods and guidelines for different analysis types and modes, that will help readers to solve problems that can arise with Abaqus if a structural model fails to converge to a solution. The use of Abaqus affords a general checklist approach to debugging analysis models, which can also be applied to structural analysis. The author uses step-by-step methods and detailed explanations of special features in order to identify the solutions to a variety of problems with finite-element models. The book promotes: * a diagnostic mode of thinking concerning error messages; * better material definition and the writing of user material subroutines; * work with the Abaqus mesher and best practice in doing so; * the writing of user element subroutines and contact features with convergence issues; and * consideration of hardware and software issues and a Windows HPC cluster solution. The methods and information provided facilitate job diagnostics and help to obtain converged solutions for finite-element models regarding structural component assemblies in static or dynamic analysis. The troubleshooting advice ensures that these solutions are both high-quality and cost-effective according to practical experience. The book offers an in-depth guide for students learning about Abaqus, as each problem and solution are complemented by examples and straightforward explanations. It is also useful for academics and structural engineers wishing to debug Abaqus models on the basis of error and warning messages that arise during finite-element modelling processing.
During the last decade significant progress has been made in the field of ship stability. Yet in spite of the progress made, numerous scientific and practical challenges still exist with regard to the accurate prediction of extreme motion and capsize dynamics for intact and damaged vessels, the probabilistic nature of extreme events, criteria that properly reflect the physics and operational safety of an intact or damaged vessel, and ways to provide relevant information on safe ship handling to ship operators. This book provides a comprehensive review of the above issues through the selection of representative papers presented at the unique series of international workshops and conferences on ship stability held between 2000 and 2009. The editorial committee has selected papers for this book from the following events: STAB 2000 Conference (Launceston, Tasmania), 5th Stability Workshop (Trieste, 2001), 6th Stability Workshop (Long Island, 2002), STAB 2003 Conference (Madrid), 7th Stability Workshop (Shanghai, 2004), 8th Stability Workshop (Istanbul, 2005), STAB 2006 Conference (Rio de Janeiro), 9th Stability Workshop (Hamburg, 2007), 10th Stability Workshop (Daejeon, 2008), and STAB 2009 Conference (St. Petersburg). The papers have been clustered around the following themes: Stability Criteria, Stability of the Intact Ship, Parametric Rolling, Broaching, Nonlinear Dynamics, Roll Damping, Probabilistic Assessment of Ship Capsize, Environmental Modelling, Damaged Ship Stability, CFD Applications, Design for Safety, Naval Vessels, and Accident Investigations. |
You may like...
CMOS Current Amplifiers
Giuseppe Palmisano, Gaetano Palumbo, …
Hardcover
R4,101
Discovery Miles 41 010
InfoSecurity 2008 Threat Analysis
Craig Schiller, Seth Fogie, …
Paperback
R1,146
Discovery Miles 11 460
Topics in Grammatical Inference
Jeffrey Heinz, Jose M. Sempere
Hardcover
R3,367
Discovery Miles 33 670
Elementary... the Art and Science of…
Miguel Fernandez, Alan Millington, …
Hardcover
R1,097
Discovery Miles 10 970
Robust Speech Recognition of Uncertain…
Dorothea Kolossa, Reinhold Haeb-Umbach
Hardcover
R2,709
Discovery Miles 27 090
Mem-elements for Neuromorphic Circuits…
Christos Volos, Viet-Thanh Pham
Paperback
R3,613
Discovery Miles 36 130
Statistical Performance Analysis and…
Ruijing Shen, Sheldon X. D. Tan, …
Hardcover
R2,692
Discovery Miles 26 920
|