![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.
Sandwich structures represent a special form of a laminated composite material or structural elements, where a relatively thick, lightweight and compliant core material separates thin stiff and strong face sheets. The faces are usually made of laminated polymeric based composite materials, and typically, the core can be a honeycomb type material, a polymeric foam or balsa wood. The faces and the core are joined by adhesive bonding, which ensures the load transfer between the sandwich constituent parts. The result is a special laminate with very high bending stiffness and strength to weight ratios. Sandwich structures are being used successfully for a variety of applications such as spacecraft, aircraft, train and car structures, wind turbine blades, boat/ship superstructures, boat/ship hulls and many others. The overall objective of the 7th International Conference on Sandwich Structures (ICSS-7) is to provide a forum for the presentation and discussion of the latest research and technology on all aspects of sandwich structures and materials, spanning the entire spectrum of research to applications in all the fields listed above.
This book addresses the problems of fracture mechanics of materials with cracks under the loading directed along the cracks. It considers two non-classical fracture mechanisms, namely the fracture of bodies compressed along cracks and the fracture of materials with initial (residual) stresses acting in parallel to the surfaces of cracks location, and presents new approaches (also including combined one) developed in the framework of three-dimensional linearized mechanics of deformable bodies. It then discusses the results of studies on two- and three-dimensional problems for various configurations of crack locations in isotropic and anisotropic materials, and based on these results, critically evaluates the accuracy and applicability limits of the "beam approximation" approach, which is widely used to study various problems of the fracture of bodies under compression along parallel cracks.
"Blurb & Contents" This current and comprehensive treatment of the physics of small- amplitude waves in hot magnetized plasmas provides a thorough update of the author's classic Theory of Plasma Waves. New topics include quasi-linear theory, inhomogeneous plasmas, collisions, absolute and convective instability, and mode conversion. Valuable for graduates and advanced undergraduates and an indispensable reference work for researchers in plasmas, controlled fusion, and space science.
This new edition of an important book in the field of strain gauge technology comprehensively covers all important aspects of and current practice in resistance strain gauge selection, installation, protection, instrumentation and performance.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
As the focus in materials science shifts towards designing materials at the sub-micron scale - the "nanotechnology" revolution - it becomes increasingly important to characterize the mechanical properties of thin films and small volumes of material. The development of of nanoscale probes and ultrasensitive transducers for force and depth has made such measurements possible. "Nanoindentation" testing is becoming increasingly used in a wide variety of research and manufacturing areas, ranging from the testing of silicon wafers in the electronics industry to the characterization of hard coatings and other surface treatments for cutting tools, dental restoratives and other biomedical implants, and optical components.This book presents a comprehensive and detailed overview of the field of nanoindentation. The underlying theory behind the extraction of elastic modulus, hardness and other properties from the load-displacement data is discussed along with the various systematic and materials-related corrections involved. Also covered are the various methods of testing, details of an international standard for depth-sensing indentation testing, the significance of surface forces and adhesion details of commercially available instruments, and sample applications of the technique. Self-contained, the treatment is aimed at those entering the field, but by bringing together material scattered widely throughout the research literature the book will also be a useful reference for the more experienced researcher.
A profusion of research and results on the mechanical behaviour of crystalline solids has followed the discovery of dislocations in the early thirties. This trend has been enhanced by the development of powerful experimental techniques. particularly X ray diffraction. transmission and scanning electron microscopy. microanalysis. The technological advancement has given rise to the study of various and complex materials. not to speak of those recently invented. whose mechanical properties need to be mastered. either for their lise as structural materials. or more simply for detenllining their fonnability processes. As is often the case this fast growth has been diverted both by the burial of early fundamental results which are rediscovered more or less accurately. and by the too fast publication of inaccurate results. which propagate widely. and are accepted without criticism. Examples of these statements abound. and will not be quoted here for the sake of dispassionateness. Understanding the mechanical properties of materials implies the use of various experimental techniques. combined with a good theoretical knowledge of elasticity. thermodynamics and solid state physics. The recent development of various computer techniques (simulation. ab initio calculations) has added to the difficulty of gathering the experimental information. and mastering the theoretical understanding. No laboratory is equipped with all the possible experimental settings. almost no scientist masters all this theoretical kno\vledge. Therefore. cooperation between scientists is needed more than even before.
Geomechanics is the mechanics of geomaterials, i.e. soils and rocks, and deals with fascinating problems such as settlements, stability of excavations, tunnels and offshore platforms, landslides, earthquakes and liquefaction. This edited book presents recent mathematical and computational tools and models to describe and simulate such problems in geomechanics and geotechnical engineering. It includes a collection of contributions emanating from the three Euroconferences GeoMath ('Mathematical Methods in Geomechanics') that were held between 2000 and 2002 in Innsbruck/Austria and Horto/Greece.
The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.
This book tackles the problematic relationship between Platonic philosophy and Romantic poetry, between the intellect and the emotions. Drawing on contemporary critical theory, especially hermeneutics and deconstruction, the author shows that a dialogue between thinking and poetizing is possible. The volume yields many new insights into both Platonic and Romantic texts and forms an important work for scholars and students of Greek philosophy, Romantic literature and critical theory.
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
As any human activity needs goals, mathematical research needs problems -David Hilbert Mechanics is the paradise of mathematical sciences -Leonardo da Vinci Mechanics and mathematics have been complementary partners since Newton's time and the history of science shows much evidence of the ben eficial influence of these disciplines on each other. Driven by increasingly elaborate modern technological applications the symbiotic relationship between mathematics and mechanics is continually growing. However, the increasingly large number of specialist journals has generated a du ality gap between the two partners, and this gap is growing wider. Advances in Mechanics and Mathematics (AMMA) is intended to bridge the gap by providing multi-disciplinary publications which fall into the two following complementary categories: 1. An annual book dedicated to the latest developments in mechanics and mathematics; 2. Monographs, advanced textbooks, handbooks, edited vol umes and selected conference proceedings. The AMMA annual book publishes invited and contributed compre hensive reviews, research and survey articles within the broad area of modern mechanics and applied mathematics. Mechanics is understood here in the most general sense of the word, and is taken to embrace relevant physical and biological phenomena involving electromagnetic, thermal and quantum effects and biomechanics, as well as general dy namical systems. Especially encouraged are articles on mathematical and computational models and methods based on mechanics and their interactions with other fields. All contributions will be reviewed so as to guarantee the highest possible scientific standards."
In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.
Principles of Hyperplasticity is concerned with the theoretical modelling of the behaviour of solids which undergo nonlinear and irreversible deformation. The approach to plasticity theory developed here is firmly rooted in thermodynamics, so that the models developed are guaranteed to obey the First and Second Laws. Major emphasis is placed on the use of potentials, and the derivation of constitutive models for irreversible behaviour entirely from two scalar potentials is shown. It is to accentuate this feature that the authors use the term "hyperplasticity," by analogy with the use of "hyperelasticity" in elasticity theory. The use of potentials has several advantages. First it allows models to be very simply defined, classified and, if necessary, developed. Secondly, by employing Legendre Transformations, it permits dependent and independent variables to be interchanged, making possible different forms of the same model for different applications. Emphasis is also placed on the derivation of incremental response, which is necessary for numerical analysis. In the later parts of the book the theory is extended to include treatment of rate-dependent materials. A new and powerful concept, in which a single plastic strain is replaced by a plastic strain function, allowing smooth transitions between elastic and plastic behaviour is also introduced. Illustrated with many examples of models derived within this framework, and including material particularly relevant to the field of geomechanics, this monograph will benefit academic researchers in mechanics, civil engineering and geomechanics and practising geotechnical engineers; it will also interest numerical analysts inengineering mechanics.
This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. This new, 3rd edition reflects a number of recent advances in materials science, such as the use of polyurea layers on metallic plates in order to improve their ballistics. In addition, more data and analyses are now available on dwell and interface defeat in ceramic tiles coated with polymers, and are presented here. Lastly, the new edition includes new results, numerical and empirical, concerning the DIF issue in brittle solids, as well as the "upturn" phenomenon in the stress-strain curves of ductile solids.The author also added a new analysis of concrete penetration experiments which accounts for the scaling issue in this field. This is a new,and important, addition which we are happy to announce. They also added some new insights into the interaction of EEP's and FSP projectiles with metallic plates. Throughout the book, the authors demonstrate the advantages of the simulation approach in terms of understanding the basic physics behind the phenomena investigated, making it a must-read for all professionals who need to understand terminal ballistics.
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.
This proceedings volume contains 39 papers presented at the IUTAM Sym- posium on Variations of Domains and Free Boundary Problems in Solid Mechanics, held in Paris from April 22nd to 25th 1997, at the Ecole des Mines and the Ecole Poly technique. This symposium offered an opportunity for researchers from all engineering disciplines and applied mathematics to review the state of the art and to identify new trends and new features in the field. Mechanical modelling, mathematical discussion and numerical resolution have been the primary goals of the meeting. Principal subjects of discussion concerned ground freezing, shape memory alloys, crystal growth, phase change in solids, piezo-electricity, wavelets, delamination, damage, fracture mechanics, polymerization, adhesion, fric- tion, porous media, nucleation, plasticity, inverse problems, and topological optimization. More than 80 scientists of different nationalities participated in this sym- posium. Efforts of many people made this symposium possible. We would like to thank all the authors and participants for their contributions and the members of the Scientific Committee for their patronage and assistance in selecting papers. The effectiveness of the Organizing Committee is ac- knowledged. We are pleased to thank all the involved members of the two Laboratories : Laboratoire de Mecanique des Solides and Laboratoire des Materiaux et des Structures du Genie Civil, specially Valerie Fran
In this book, leading scientists share their vision on the Kolsky-Hopkinson bar technique, which is a well-established experimental technique widely used to characterize materials and structures under dynamic, impact and explosion loads. Indeed, the Kolsky-Hopkinson bar machine is not a simple experimental device. It is rather a philosophical approach to solve the problem of measuring impact events. The split Hopkinson pressure bar conventional device is mainly limited to test homogeneous ductile non-soft materials under uni-axial compression. Extending the use of this device to more versatile applications faces several challenges such as controlling the stress state within the specimen and mastering the measurement of forces and velocities at the specimen-bar interfaces and then the material properties. Thus, the topics discussed in this book mainly focused on the loading and processing parts.
In the recent decades, computational procedures have been applied to an increasing extent in engineering and the physical sciences. Mostly, two separate fields have been considered, namely, the analysis of solids and structures and the analysis of fluid flows. These continuous advances in analyses are of much interest to physicists, mathematicians and in particular, engineers. Also, computational fluid and solid mechanics are no longer treated as entirely separate fields of applications, but instead, coupled fluid and solid analysis is being pursued. The objective of the Book Series is to publish monographs, textbooks, and proceedings of conferences of archival value, on any subject of computational fluid dynamics, computational solid and structural mechanics, and computational multi-physics dynamics. The publications are written by and for physicists, mathematicians and engineers and are to emphasize the modeling, analysis and solution of problems in engineering.
Segregation is a pervasive phenomenon whereby a flowing granular mass consisting of particles with diverse physical properties becomes spatially inhomogeneous. In the industrial sector that deals with the handling and processing of bulk solids, this non-uniformity is highly undesirable since blend homogeneity is generally a stringent requirement of most products. In the arena of geophysical flows, segregation can enhance the destructive capabilities of natural events such as avalanches and landslides. During the last 15 years, these issues have provided motivation and fostered collaborations between the communities of mathematicians, engineers, industrial researchers, and physicists to develop predictive models of segregation by integrating the perspectives and approaches of each. The collection of unique papers brings to light many of the perplexing scientific and technical issues in our current understanding of this complex phenomenon. It addresses advances in experiment, computational modeling and theory. This volume is one of the very few books devoted entirely to problems of segregation of particulate solids.
To predict loading limits for structures and structural elements is one of the oldest and most important tasks of engineers. Among the theoretical and numericalmethodsavailableforthispurpose, so-called"DirectMethods,"- bracing Limit- and Shakedown Analysis, play an eminent role due to the fact that they allow rapid access to the requested information in mathematically constructive manners. The collection of papers in this book is the outcome of a workshop held at Aachen University of Technology in November 2007. The individual c- tributions stem in particular from the areas of new numerical developments renderingthemethodsmoreattractive forindustrialdesign, extensionsofthe general methodology to new horizons of application, probabilistic approaches and concrete technological applications. The papers are arranged according to the order of the presentations in the workshop and give an excellent insight into state-of-the-art developments in this broad and growing ?eld of research. The editors warmly thank all the scientists, who have contributed by their outstanding papers to the quality of this edition. Special thanks go to Jaan Simon for his great help in putting together the manuscript to its ?nal shape.
The main advantages of sandwiches as structural components are now well known and well-established. Due to the progress in polymer science and engineering and advances in manufacturing processes, sandwich structures can blend various functional and structural properties and therefore lead to highly innovating systems. The current difficulty to overcome is to provide designers with proper methodologies and tools that could enable them to design improved sandwich structures. Such dedicated design tools should be efficient, reliable, flexible and user-friendly. They should be based on advanced knowledge of sandwich behaviour at global and local scales. Such approach relies on our capability to test, identify, control and model structure performances. The impressive variety of core and face materials and the rapid developments in forming processes give new opportunities to design components which have more complex shapes and higher integrated functional and structural properties. Interest in sandwiches is permanently growing in industry and refined testing and modelling approaches should be encouraged to set up relevant guidelines to design reliable advanced structures. The European Society for Mechanics sponsored the EUROMECH 360 Colloquium on the 'Mechanics of Sandwich Structures' in Saint-Etienne, France, on 13 - 15 May 1997. The main purpose of EUROMECH 360 was to go into the most recent progresses in sandwich analysis and design, including mechanical modelling and testing. It was expected that the Colloquium should contribute to define new research directions to support development of advanced applications in strategic industrial sectors such as ground transportations or building and civil engineering." |
![]() ![]() You may like...
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R5,170
Discovery Miles 51 700
Proceedings of 16th Asian Congress of…
L. Venkatakrishnan, Sekhar Majumdar, …
Hardcover
R4,463
Discovery Miles 44 630
Vibration Fatigue by Spectral Methods…
Janko Slavic, Miha Boltezar, …
Paperback
R4,216
Discovery Miles 42 160
Analysis of Shells, Plates, and Beams…
Holm Altenbach, Natalia Chinchaladze, …
Hardcover
R5,176
Discovery Miles 51 760
Structural Analysis of Concrete-Filled…
Yufen Zhang, Degang Guo
Hardcover
R4,617
Discovery Miles 46 170
Nonlinear Mechanics of Complex…
Holm Altenbach, Marco Amabili, …
Hardcover
R6,327
Discovery Miles 63 270
|