![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.
This work is the first and only book on the fundamentals of ultrasonic machining. It presents the foundations of dynamic and control for ultrasonic processing systems and considers ultrasonic systems as special vibratory machines that function by exploiting nonlinear dynamic processes. Recommendations are given for designing and tuning ultrasonic machines. The ultrasonic machines analyzed are predominantly concerned with the processing of solids.
The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. p>
The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The current volume presents the state of the art research in this field. The contributions cover all the aspects of the novel composite systems, i.e. modeling from nano to macro scale, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as the capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospace composites.
This book gives state-of-the-art information about recent developments in the field of computational modeling of solid materials at finite strains. It contains papers presented at the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Today, computational methods and simulation techniques play a central role in advancing the understanding of complex material behavior. Material behavior is nowadays modeled in the strongly nonlinear range by taking into account finite strains, complex hysteresis effect, fracture phenomena and multiscale features. Progress in this field is of fundamental importance for many engineering disciplines, especially those concerned with material testing, safety, reliability and serviceability analyses of engineering structures. This book summarizes recent progress in the modeling of solid materials undergoing deformations large strains, where the mathematical and computational analysis is highly challenging due to the nonlinear geometry. A further key aspect of the volume is the modeling of multiscale characteristics of materials by homogenization approaches and variational methods. The volume provides a state of the art survey about theoretical and computational approaches to (i) modeling of large-strain elastic and inelastic deformations of solids on different length scales, (ii) mathematical analysis of finite inelastic deformations of solids based on incremental variational formulations for non-convex problems with microstructure developments and (iii) homogenization methods for the determination of effective overall properties of heterogeneous materials. The book allows researchers and engineers to get an excellent overview aboutthe computational methods for solid materials at finite strains.
The author applies methods of nonlinear elasticity to investigate the defects in the crystal structure of solids such as dislocations and disclinations that characterize the plastic and strength properties of many materials. Contrary to the geometrically motivated nonlinear theory of dislocations continuously distributed over the body, nonlinear analysis of isolated dislocations and disclinations is less developed; it is given for the first time in this book, and in a form accessible to both students and researchers. The general theory of Volterra's dislocations in elastic media under large deformations is developed. A number of exact solutions are found. The nonlinear approach to investigating the isolated defects produces results that often differ qualitatively from those of the linear theory.
This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.
This book focuses on the way in which the problem of the motion of bodies has been viewed and approached over the course of human history. It is not another traditional history of mechanics but rather aims to enable the reader to fully understand the deeper ideas that inspired men, first in attempting to understand the mechanisms of motion and then in formulating theories with predictive as well as explanatory value. Given this objective, certain parts of the history of mechanics are neglected, such as fluid mechanics, statics and astronomy after Newton. On the other hand, due attention is paid, for example, to the history of thermodynamics, which has its own particular point of view on motion. Inspired in part by historical epistemology, the book examines the various views and theories of a given historical period (synchronic analysis) and then makes comparisons between different periods (diachronic analysis). In each period, one or two of the most meaningful contributions are selected for particular attention, instead of presenting a long inventory of scientific achievements.
Collapsing engineering soils are a formidable hazard around the world. These difficult materials also include some of the world's most fertile agricultural soils, fostering dense human populations which are therefore increasingly at risk. Despite an impressive literature on the engineering aspects of collapsing soils, these materials are coming under increasing scrutiny by scientists in other fields. This is most evidently the case with soil scientists, stratigraphers and sedimentologists. Past earth surface conditions have a direct influence on the detailed behaviour of collapsible soils: as a complement, these materials also provide detailed data on changing global climates. The selected papers presented here highlight the common ground between three scientific groups with a vested interest in a better understanding of collapsible soils.
The use of precast concrete is a well-established construction technique for beams, floors, panels, piles, walls and other structural elements. The advan tages of precasting include excellent quality control, economical large scale production, improved construction productivity (especially in adverse weather conditions) and immediate structure availability. These advantages have been recognized for precast concrete raft pavement units (raft units) since their introduction in the 1930s. In the last ten years there has been a considerable increase in the use ofraft units, especially in their range of applications, their analysis and their design. However, the description of these developments has been published in academicjournals and conference proceedings which are not readily available to practising raft unit pavement design engineers. Pavement design engineers are underincreasingpressure to produce raft unit designs that are inexpensive, long lasting and able to allow reorganization to accommodate changing use and uncertainty offuture loading requirements. This is the first book devoted to raft unit pavements, and will become a standard work of reference."
This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations.Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals.This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.
This book includes a numerical investigation of shear localization in granular materials within micro-polar hypoplasticity, which was carried out during my long research stay at the Institute of Soil and Rock Mechanics at Karlsruhe University from 1985 to 1996. I dedicate my book to Prof. Gerd Gudehus from Germany, the former head of the Institute of Rock and Soil Mechanics at Karlsruhe University and the supervisor of my scientific research during my stay in Karlsruhe, who encouraged me to deal with shear localization in granular bodies within micro-polar hypoplasticity. I greatly - preciate his profound knowledge, kind help constructive discussions, and collegial attitude to his co-workers. I am thankful to the both series editors: Prof. Wei Wu from Universitat fur Bodenkultur in Austria and Prof. Ronaldo Borja from Stanford University in USA for their helpful suggestions with respect to the contents and structure of the book. I am also grateful to Dr. Thomas Ditzinger and Mrs. Heather King from the Springer Publishing Company and SPS data processing team for their help in editing this book. Gdansk, Jacek Tejchman June 2008 Contents 1 Introduction......................................................................... 1 2 Literature Overview on Experiments........................................... 11 3 Theoretical Model.................................................................. 47 3.1 Hypoplastic Constitutive Model............................................. 47 3.2 Calibration of Hypoplastic Material Parameters........................... 60 3.3 Micro-polar Continuum........................................................ 67 3.4 Micro-polar Hypoplastic Constitutive Model.............................. 72 3.5 Finite Element Implementation................................................ 75 4 Finite Element Calculations: Preliminary Results............................
New developments in the applications of fracture mechanics to engineering problems have taken place in the last years. Composite materials have extensively been used in engineering problems. Quasi-brittle materials including concrete, cement pastes, rock, soil, etc. all benefit from these developments. Layered materials and especially thin film/substrate systems are becoming important in small volume systems used in micro and nanoelectromechancial systems (MEMS and NEMS). Nanostructured materials are being introduced in our every day life. In all these problems fracture mechanics plays a major role for the prediction of failure and safe design of materials and structures. These new challenges motivated the author to proceed with the second edition of the book. The second edition of the book contains four new chapters in addition to the ten chapters of the first edition. The fourteen chapters of the book cover the basic principles and traditional applications, as well as the latest developments of fracture mechanics as applied to problems of composite materials, thin films, nanoindentation and cementitious materials. Thus the book provides an introductory coverage of the traditional and contemporary applications of fracture mechanics in problems of utmost technological importance. With the addition of the four new chapters the book presents a comprehensive treatment of fracture mechanics. It includes the basic principles and traditional applications as well as the new frontiers of research of fracture mechanics during the last three decades in topics of contemporary importance, like composites, thin films, nanoindentation and cementitious materials. The book containsfifty example problems and more than two hundred unsolved problems. A "Solutions Manual" is available upon request for course instructors from the author.
This text book covers the principles and methods of load effect calculations that are necessary for engineers and designers to evaluate the strength and stability of structural systems. It contains the mathematical development from basic assumptions to final equations ready for practical use. It starts at a basic level and step by step it brings the reader up to a level where the necessary design safety considerations to static load effects can be performed, i.e. to a level where cross sectional forces and corresponding stresses can be calculated and compared to the strength of the system. It contains a comprehensive coverage of elastic buckling, providing the basis for the evaluation of structural stability. It includes general methods enabling designers to calculate structural displacements, such that the system may fulfil its intended functions. It is taken for granted that the reader possess good knowledge of calculus, differential equations and basic matrix operations. The finite element method for line-like systems has been covered, but not the finite element method for shells and plates.
During the last decades, the growth of micro-electronics has reduced the cost of computing power to a level acceptable to industry and has made possible sophisticated control strategies suitable for many applications. Vibration c- trol is applied to all kinds of engineering systems to obtain the desired dynamic behavior, improved accuracy and increased reliability during operation. In this context, one can think of applications related to the control of structures' vib- tion isolation, control of vehicle dynamics, noise control, control of machines and mechanisms and control of ?uid-structure-interaction. One could continue with this list for a long time. Research in the ?eld of vibration control is extremely comprehensive. Pr- lems that are typical for vibration control of nonlinear mechanisms and str- tures arise in the ?elds of modeling systems in such a way that the model is suitable for control design, to choose appropriate actuator and sensor locations and to select the actuators and sensors. Theobjective of the Symposium was to present anddiscuss methodsthat contribute to thesolution of such problems and to demonstrate the state of the art inthe ?eld shown by typical examples. The intention was to evaluate the limits of performance that can beachievedby controlling the dynamics, and to point out gaps in present research and give links for areas offuture research.Mainly, it brought together leading experts from quite different areas presenting theirpoints of view.
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams and elasticity with detailed derivations for the mass, stiffness and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson s equation. The second computer program handles the two dimensional elasticity problems and the third one presents the three dimensional transient heat conduction problems. The programs are written in C++ environment."
This book is intended to be an introduction to elasticity theory. It is as sumed that the student, before reading this book, has had courses in me chanics (statics, dynamics) and strength of materials (mechanics of mate rials). It is written at a level for undergraduate and beginning graduate engineering students in mechanical, civil, or aerospace engineering. As a background in mathematics, readers are expected to have had courses in ad vanced calculus, linear algebra, and differential equations. Our experience in teaching elasticity theory to engineering students leads us to believe that the course must be problem-solving oriented. We believe that formulation and solution of the problems is at the heart of elasticity theory. 1 Of course orientation to problem-solving philosophy does not exclude the need to study fundamentals. By fundamentals we mean both mechanical concepts such as stress, deformation and strain, compatibility conditions, constitu tive relations, energy of deformation, and mathematical methods, such as partial differential equations, complex variable and variational methods, and numerical techniques. We are aware of many excellent books on elasticity, some of which are listed in the References. If we are to state what differentiates our book from other similar texts we could, besides the already stated problem-solving ori entation, list the following: study of deformations that are not necessarily small, selection of problems that we treat, and the use of Cartesian tensors only."
This volume presents selected papers from the 7th International Congress on Computational Mechanics and Simulation held at IIT Mandi, India. The papers discuss the development of mathematical models representing physical phenomena and applying modern computing methods and simulations to analyse them. The studies cover recent advances in the fields of nano mechanics and biomechanics, simulations of multiscale and multiphysics problems, developments in solid mechanics and finite element method, advancements in computational fluid dynamics and transport phenomena, and applications of computational mechanics and techniques in emerging areas. The volume will be of interest to researchers and academics from civil engineering, mechanical engineering, aerospace engineering, materials engineering/science, physics, mathematics and other disciplines.
Plasticity, the ability to undergo permanent deformation, is a property of metallic materials that has great significance for the load carrying behaviour of engineering structures, and for the manufacturing of structural components by forming processes. Bridging the gap between classical theory and modern computational techniques, this book deals with the load carrying aspect of plasticity. The text focuses on the most important elements of theory and computation using matrix notation, whilst the development of analytical solutions is avoided except where these aid illustration or verification. Some complementary aspects of creep and viscoplasticity are considered, and a number of selected applications from engineering practice are used to demonstrate the usage of computational techniques. Aimed equally at graduate students, practicing engineers and consultants in areas such as civil, mechanical, automotive and aerospace engineering, this updated and revised Elements of Plasticity includes results of research and development work carried out by the author and his team. It can be used to increase the reader's understanding of computational concepts or tools applied to the analysis of elastoplastic structures and solids, or to further develop their knowledge of the subject.
The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years. This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a different and more modern approach. It is however unique by the inclusion of an extensive chapter on mechanical behavior in the micron and submicron/nanometer range. Mechanical deformation phenomena are explained and often related to the presence of dislocations in structures. Many practical illustrations are provided representing various observations encountered in actual structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included to provide a broad basis for further studying the subject.
The papers in this proceeding are a collection of the works presented at the IUTAM symposium-Marrakech 2002 (October 20-25) which brought together scientists from various countries. These papers cover contemporary topics in multiscale modeling and characterization of materials behavior of engineering materials. They were selected to focus on topics related to deformation and failure in metals, alloys, intermetallics and polymers including: experimental techniques, deformation and failure mechanisms, dislocation-based modelling, microscopic-macroscopic averaging schemes, application to forming processes and to phase transformation, localization and failure phenomena, and computational advances. Key areas that are covered by some of the papers include modeling of material deformation at various scales. At the atomistic scale, results from MD simulations pertaining to deformation mechanisms in nano-crystalline materials as well as dislocation-defect interactions are presented. Advances in modeling of deformation in metals using discrete dislocation analyses are also presented, providing an insight into this emerging scientific technique that can be used to model deformation at the microscale. These papers address current engineering problems, including deformation of thin fIlms, dislocation behavior and strength during nanoindentation, strength in metal matrix composites, dislocation-crack interaction, development of textures in polycrystals, and problems involving twining and shape memory behavior. On Behalf of the organizing committee, I would like to thank Professor P.
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
A compact presentation of the foundations, current state of the art, recent developments and research directions of all essential techniques related to the mechanics of composite materials and structures. Special emphasis is placed on classic and recently developed theories of composite laminated beams, plates and shells, micromechanics, impact and damage analysis, mechanics of textile structural composites, high strain rate testing and non-destructive testing of composite materials and structures. Topics of growing importance are addressed, such as: numerical methods and optimisation, identification and damage monitoring. The latest results are presented on the art of modelling smart composites, optimal design with advanced materials, and industrial applications. Each section of the book is written by internationally recognised experts who have dedicated most of their research work to a particular field. Readership: Postgraduate students, researchers and engineers in the field of composites. Undergraduate students will benefit from the treatment of the foundations of the mechanics of composite materials and structures.
This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: "The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory." (ZAMM, 2002) "In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field." (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews)
The simplest way to formulate the basic equations of continuum mech- ics and the constitutive or evolutional equations of various materials is to restrict ourselves to rectangular cartesian coordinates. However, solving p- ticular problems, for instance in Chapter 5, it may be preferable to work in terms of more suitable coordinate systems and their associated bases. The- fore, Chapter 2 is also concerned with the standard techniques of tensor an- ysis in general coordinate systems. Creep mechanics is a part of continuum mechanics, like elasticity or pl- ticity. Therefore, some basic equations of continuum mechanics are put - gether in Chapter 3. These equations can apply equally to all materials and they are insuf?cient to describe the mechanical behavior of any particular material. Thus, we need additional equations characterizing the individual material and its reaction under creep condition according to Chapter 4, which is subdivided into three parts: the primary, the secondary, and the tertiary creep behavior of isotropic and anisotropic materials. The creep behavior of a thick-walled tube subjected to internal pressure is discussed in Chapter 5. The tube is partly plastic and partly elastic at time zero. The investigation is based upon the usual assumptions of incompre- ibility and zero axial creep. The creep deformations are considered to be of such magnitude that the use of ?nite-strain theory is necessary. The inner and outer radius, the stress distributions as functions of time, and the cre- failure time are calculated. |
![]() ![]() You may like...
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,620
Discovery Miles 36 200
Vibration Fatigue by Spectral Methods…
Janko Slavic, Miha Boltezar, …
Paperback
R4,114
Discovery Miles 41 140
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R4,081
Discovery Miles 40 810
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R5,171
Discovery Miles 51 710
Proceedings of 16th Asian Congress of…
L. Venkatakrishnan, Sekhar Majumdar, …
Hardcover
R4,511
Discovery Miles 45 110
|