![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book's final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.
Since the original publication of Noncontact Atomic Force Microscopy in 2002, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. This second treatment deals with the following outstanding recent results obtained with atomic resolution since then: force spectroscopy and mapping with atomic resolution; tuning fork; atomic manipulation; magnetic exchange force microscopy; atomic and molecular imaging in liquids; and other new technologies. These results and technologies are now helping evolve NC-AFM toward practical tools for characterization and manipulation of individual atoms/molecules and nanostructures with atomic/subatomic resolution. Therefore, the book exemplifies how NC-AFM has become a crucial tool for the expanding fields of nanoscience and nanotechnology. Written for: Scientists, practitioners, graduate students
This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book's fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.
This book is based on the 55th International Conference of Machine Design Departments 2014 (ICMD 2014) which was hosted by the Czech Technical University in September 2014. It features scientific articles which solve progressive themes from the field of machine design. The book addresses a broad range of themes including tribology, hydraulics, materials science, product innovation and experimental methods. It presents the latest interdisciplinary high-tech work. People with an interest in the latest research results in the field of machine design and manufacturing engineering will value this book with contributions of leading academic scientists and experts from all around the world.
The major developments in the fields of fluid and solid mechanics
are scattered throughout an array of technical journals, often
making it difficult to find what the real advances are, especially
for a researcher new to the field or an individual interested in
discovering the state-of-the-art in connection with applications.
The Advances in Applied Mechanics book series draws together recent
significant advances in various topics in applied mechanics.
Published since 1948, Advances in Applied Mechanics aims to provide
authoritative review articles on topics in the mechanical sciences,
primarily of interest to scientists and engineers working in the
various branches of mechanics, but also of interest to the many who
use the results of investigations in mechanics in various
application areas such as aerospace, chemical, civil,
environmental, mechanical and nuclear engineering. Advances in
Applied Mechanics continues to be a publication of high visibility
and impact. Review articles are provided by active, leading
scientists in the field by invitation of the editors. Many of the
articles published have become classics within their fields. Volume
42 in the series contains articles on coarse-graining in
elasto-viscoplasticity, elasticity at nano-scale, and elestic and
conductive properties of heterogeneous materials.
"The mathematical investigations referred to bring the whole apparatus of a great science to the examination of the properties of a given mechanism, and have accumulated in this direction rich material, of enduring and increasing value. What is left unexamined is however the other, immensely deeper part of the problem, the question: How did the mechanism, or the elements of which it is composed, originate? What laws govern its building up? Is it indeed formed according to any laws whatever? Or have we simply to accept as data what invention gives us, the analysis of what is thus obtained being the only scientific problem left - as in the case of natural history?" Reuleaux, F., Theoretische Kinematik, Braunschweig: Vieweg, 1875 Reuleaux, F., The Kinematics of Machinery, London: Macmillan, 1876 and New York: Dover, 1963 (translated by A.B.W. Kennedy) This book represents the second part of a larger work dedicated to the structural synthesis of parallel robots. Part 1 already published in 2008 (Gogu 2008a) has presented the methodology proposed for structural synthesis. This book focuses on various topologies of translational parallel robots systematically generated by using the structural synthesis approach proposed in Part 1. The originality of this work resides in the fact that it combines the new formulae for mobility connectivity, redundancy and overconstraints, and the evolutionary morphology in a unified approach of structural synthesis giving interesting innovative solutions for parallel mechanisms.
This distinctive textbook aims to introduce readers to the basic structures of the mechanics of deformable bodies, with a special emphasis on the description of the elastic behavior of simple materials and structures composed by elastic beams. The authors take a deductive rather than inductive approach and start from a few first, foundational principles. A wide selection of exercises, many with hints and solutions, are provided throughout and organized in a way that will allow readers to form a link between abstract mathematical concepts and real-world applications. The text begins with the definition of bodies and deformations, keeping the kinematics of rigid bodies as a special case; the authors also distinguish between material and spatial metrics, defining each one in the pertinent space. Subsequent chapters cover observers and classes of possible changes; forces, torques, and related balances, which are derived from the invariance under classical changes in observers of the power of the external actions over a body, rather than postulated a priori; constitutive structures; variational principles in linear elasticity; the de Saint-Venant problem; yield criteria and a discussion of their role in the representation of material behavior; and an overview of some bifurcation phenomena, focusing on the Euler rod. An appendix on tensor algebra and tensor calculus is included for readers who need a brief refresher on these topics. Fundamentals of the Mechanics of Solids is primarily intended for graduate and advanced undergraduate students in various fields of engineering and applied mathematics. Prerequisites include basic courses in calculus, mathematical analysis, and classical mechanics.
Kinematics is an exciting area of computational mechanics which plays a central role in a great variety of fields and industrial applications. Apart from research in pure kinematics, the field offers challenging problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The present book collects a number of important contributions presented during the First Conference on Interdisciplinary Applications of Kinematics (IAK 2008) held in Lima, Peru. To share inspiration and non-standard solutions among the different applications, the conference brought together scientists from several research fields related to kinematics, such as for example, computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics and chemistry. The conference focused on all aspects of kinematics, namely modeling, optimization, experimental validation, industrial applications, theoretical kinematical methods, and design. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
Corrosion by external currents (electrocorrosion) of metallic
constructions has to be regarded as a strongest factor of
aggressiveness in conductive aggressive environments. Corrosion by
stray currents of underground and underwater metal constructions
was comprehensively and profoundly studied long ago and it is
considered in this book only in the form of a review. The primary
attention is focused on corrosion by external anodic (mainly) and
cathodic currents of metal constructions in environments of high
aggressiveness typical for electrochemical plants of chemical and
non-ferrous metallurgical brunches of industry, where penetration
of the external currents (leakage currents) from the electrolytic
baths to the metal constructions is unavoidable.
Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries.
This book is the first collection of lipid-membrane research conducted by leading mechanicians and experts in continuum mechanics. It brings the overall intellectual framework afforded by modern continuum mechanics to bear on a host of challenging problems in lipid membrane physics. These include unique and authoritative treatments of differential geometry, shape elasticity, surface flow and diffusion, interleaf membrane friction, phase transitions, electroelasticity and flexoelectricity, and computational modelling.
Advanced materials play a crucial role in modern engineering applications where they are often exposed to complex loading and environmental conditions. In many cases, new approaches are needed to characterise these materials and to model their behaviour. Such approaches should be calibrated and validated by specific experimental techniques, quantifying both microstructural features and respective mechanisms at various length scales. The book provides an overview of modern modelling tools and experimental methods that can be employed to analyse and estimate properties and performance of advanced materials. A special feature of the book is the analysis of case studies used to demonstrate the strategies of solving the real-life problems, in which the microstructure of materials directly affects their response to loading and/or environmental conditions. The reader will benefit from a detailed analysis of various methods as well as their implementation for dealing with various advanced materials.
The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it 's impact on the macro behaviour are considered.
This book thoroughly describes a theory concerning the yield and failure of materials under multi-axial stresses - the Unified Strength Theory, which was first proposed by the author and has been frequently quoted since. It provides a system of yield and failure criteria adopted for most materials, from metals to rocks, concretes, soils, and polymers. This new edition includes six additional chapters: General behavior of Strength theory function; Visualization of the Unified Strength Theory; Equivalent Stress of the UST and Comparisons with other criteria; Economic Signification of the UST; General form of failure criterion; Beauty of Strength Theories. It is intended for researchers and graduate students in various fields, including engineering mechanics, material mechanics, plasticity, soil mechanics, rock mechanics, mechanics of metallic materials and civil engineering, hydraulic engineering, geotechnical engineering, mechanical engineering and military engineering.
Any researchers in the field of meshless methods who want to keep up to date with the latest work in the field will find this an essential text.In recent years meshless/meshfree methods have gained considerable attention in engineering and applied mathematics.The variety of problems that are now being addressed by these techniques continues to expand and the quality of the results obtained demonstrates the effectiveness of many of the methods currently available.This means that engineers in general, applied mathematicians, physicists, and those active in computational mechanics will all find this book a useful reference tool as well. The book collects extended original contributions presented at the first ECCOMAS Conference on Meshless Methods held in 2005 in Lisbon.
This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.
Wood-plastic composite (WPC) is a non-recyclable composite material lumber or timber made of recycled plastic and wood wastes which has become one of the most dynamic sectors of the plastics industry in this decade. It is used in numerous applications, such as, outdoor deck floors, railings, fences, landscaping timbers, park benches, window and door frames. This book starts with a brief glimpse at the basic structures and properties of WPCs. Aspects such as surface treatment, machinery used and testing types of WPCs are also covered. The following chapters of the book give a view of foam technology, flame retardant properties and colour retardant properties of WPCs. The way morphology affects or controls the physical and mechanical behaviours of the finished materials is discussed. Finally, the authors give an overview of the applications of wood-plastic composites in daily life. The book may serve as a source book for scientists wishing to work in this field.
This hard bound spinoff from a special issue of the Journal of Elasticity (volume 100: 1-2) features an English translation of an important 1955 paper by Walter Noll, Die Herteitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. In this paper, Noll addresses and analyses the seminal paper of Irving and Kirkwood, published five years earlier, on The Statistical Mechanical Theory of Transport Processes. IV, The Equations of Hydrodynamics. Noll gives new interpretations and provides a firm setting for ideas advanced by Irving & Kirkwood that clearly and directly relate to the basic principles of continuum mechanics. However, the original German paper of Noll seems not to have gained the attention that it deserved as the field of statistical mechanics grew both fundamentally and in applications. By providing an English translation of Noll s paper, Lehoucq & Von Lilienfeld-Toal have provided a great service to the scientific community. The Noll translation is presented here to expose fundamental ideas of statistical mechanics that are of major importance in the modeling of small-scale behavior and its link to macroscopic observations. In recent years there has been a rapidly increasing reliance upon and interest in multi scale methods in computation. This has accentuated the need to establish meaningful connections between atomistic and continuum descriptions of contact interactions such as stress and heat flux. In recognition of Noll s contribution, the translation is accompanied by four relevant and invited papers, including one, entitled Thoughts on the Concept of Stress, by Noll himself.
This volume presents the major outcome of the IUTAM symposium on
Advanced Materials Modeling for Structures . It discusses advances
in high temperature materials research, and also to provides a
discussion the new horizon of this fundamental field of applied
mechanics. The topics cover a large domain of research but place a
particular emphasis on multiscale approaches at several length
scales applied to non linear and heterogeneous materials.
This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads. Chapter 8 gives a cost comparison of cylindrical and conical shells. The book contains a large collection of literatures and a subject list and a name index.
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis
Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.
The bookopens with a derivation of kinematically nonlinear 3-D
continuum mechanics for solids.
This book deals with the problem of dynamics of bodies with time-variable mass and moment of inertia. Mass addition and mass separation from the body are treated. Both aspects of mass variation, continual and discontinual, are considered. Dynamic properties of the body are obtained applying principles of classical dynamics and also analytical mechanics. Advantages and disadvantages of both approaches are discussed. Dynamics of constant body is adopted, and the characteristics of the mass variation of the body is included. Special attention is given to the influence of the reactive force and the reactive torque. The vibration of the body with variable mass is presented. One and two degrees of freedom oscillators with variable mass are discussed. Rotors and the Van der Pol oscillator with variable mass are displayed. The chaotic motion of bodies with variable mass is discussed too. To support learning, some solved practical problems are included.
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinearities introduced by pendulum motion may change the system dynamics, and entail a rapid increase of the oscillations of both the structure and the pendulum, leading to full pendulum rotation or chaotic dynamics. To magnetorheological damping is proposed. Nonlinear mechanics has to be used to explain undesired response in slender footbridges, such as that occurred in the famous event of the London Millenium Bridge. The observed phenomena can be explained by an analytical nonlinear discrete-time model. Shape memory alloys (SMAs) exhibit very interesting nonlinear thermo-mechanical properties such as shape memory effect and superelasticity. SMA elements integrated within composite beams or plates can be used for active modification of structure properties e.g. by affecting their natural frequencies. Finite amplitude, resonant, forced dynamics of sagged, horizontal or inclined, elastic cables have recently undergone meaningful research advances concerned with modelling, analysis, response, and nonlinear/nonregular phenomena. A variety of features of nonlinear multimodal interaction in different resonance conditions are comparatively addressed. Non-smooth systems are very common in engineering practice. Three mechanical engineering problems are presented: (i) a vibro-impact system in the form of a moling device, (ii) the influence of the opening and closing of a fatigue crack on the host system dynamics, and (iii) nonlinear interactions between a rotor and snubber ring system. This book is aimed at a wide audience of engineers and researchers working in the field of nonlinear structural vibrations and dynamics, and undergraduate and postgraduate students reading mechanical, aerospace and civil engineering. |
You may like...
External Magnetic Field Effects on…
Mohsen Sheikholeslami, Davood Domairry Ganji
Hardcover
R3,224
Discovery Miles 32 240
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
The Complete Works of Gabrio Piola…
Francesco Dell'Isola, Ugo Andreaus, …
Hardcover
R6,031
Discovery Miles 60 310
Study of Grain Boundary Character
Tomasz Tański, Wojciech Borek
Hardcover
R3,095
Discovery Miles 30 950
Imperfect Bifurcation in Structures and…
Kiyohiro Ikeda, Kazuo Murota
Hardcover
R2,200
Discovery Miles 22 000
Semi-inverse Method In Nonlinear…
Anatoly S Yudin, Dmitry V Shchitov
Hardcover
R2,144
Discovery Miles 21 440
|