![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book offers a state-of-the-art overview and includes recent developments of various direct computational analysis methods. It is based on recently developed and widely employed numerical procedures for limit and shakedown analysis of structures and their extensions to a wide range of physical problems relevant to the design of materials and structural components. The book can be used as a complementary text for advanced academic courses on computational mechanics, structural mechanics, soil mechanics and computational plasticity and it can be used a research text.
The formalism processing of unbuckled solids mechanics involves several mathematical tools which are to be mastered at the same time. This volume collects the main points which take place in the course of the formalism, so that the user immediately finds what he needs without looking for it. Furthermore, the book contains a methodological formulary to guide the user in his approach.
This book gathers contributions on analytical, numerical, and application aspects of time-delay systems, under the paradigm of control theory, and discusses recent advances in these different contexts, also highlighting the interdisciplinary connections. The book will serve as a useful tool for graduate students and researchers in the fields of dynamical systems, automatic control, numerical methods, and functional analysis.
Thin shells are three-dimensional structures with a dimension (the thickness) small with respect to the two others.Such thin structures are widely used in automobileandaviation industries,or in civil engineering, because they provide animportantsti?ness, due to theircurvature,with a small weight. Fig. 0.1. Airbus A380 Fig. 0.2. Hemispherical roof (Marseille, France) One ofthechallenges is often to reduce the weight (andconsequently the thickness)oftheshells, preservingtheirsti?ness.So that it is essential to have 1 accuratemodelsforthinandevenverythinshells ,andtobeabletocomputethe displacements resultingfromagivenloading.In particular, singularities leading to fractures in some cases must be absolutely predicted a priori and ofcourse avoided (see Fig.0.3 forexample). Since the pioneeringmodels of Novozhilov-Donnell [81] and Koiter [65][66], numerous works havebeen devoted to establish linear and non linear elastic shell model usingdirect orsurfacic approaches [18][25][100]. More recently, the asymptoticmethods [87] havebeen used, to try tojustify rigorously, fromthe three-dimensional equations, the shell models obtained by direct approaches - lying onapriori assumption, andto construct new models [54][55]. This way, 1 Very thin shells are present in certain domains of industry, as plastic ?lms for pa- aging or for electronics, streched sails, or even very thin metal sheets obtained by drawing. E. Sanchez-Palencia et al.: Singular Problems in Shell Theory, LNACM 54, pp. 1-11.
As the focus in materials science shifts towards designing materials at the sub-micron scale - the "nanotechnology" revolution - it becomes increasingly important to characterize the mechanical properties of thin films and small volumes of material. The development of of nanoscale probes and ultrasensitive transducers for force and depth has made such measurements possible. "Nanoindentation" testing is becoming increasingly used in a wide variety of research and manufacturing areas, ranging from the testing of silicon wafers in the electronics industry to the characterization of hard coatings and other surface treatments for cutting tools, dental restoratives and other biomedical implants, and optical components.This book presents a comprehensive and detailed overview of the field of nanoindentation. The underlying theory behind the extraction of elastic modulus, hardness and other properties from the load-displacement data is discussed along with the various systematic and materials-related corrections involved. Also covered are the various methods of testing, details of an international standard for depth-sensing indentation testing, the significance of surface forces and adhesion details of commercially available instruments, and sample applications of the technique. Self-contained, the treatment is aimed at those entering the field, but by bringing together material scattered widely throughout the research literature the book will also be a useful reference for the more experienced researcher.
model. They conclude that the models using three fitting parameters provide the best fit over a wide range of suctions. Models for soil-water characteristic curves are only useful if we have experimental data on which to base them. Agus, Leong and Rahardjo (Singapore) present a large number of experimental soil-water characteristic curves determined for two types of residual soil from Sigapore. They present data for eight different sites. This data set allows them to relate the parameters of the soil-water characteristic curves to index properties. They conclude that the relationships derived are suitable to pro vide a quick preliminary estimate of a soil-water characteristic curve. The importance of soil-water characteristic curves is emphasized by another con tribution dealing with this topic. Aung, Rahardjo, Leong and Toll (Singapore) inves tigate the relationship between mercury intrusion porosimetry measurements and soil-water characteristic curves. The porosimetry measurements are presented as soil-air characteristic curves. The slopes of the soil-air characteristic curves are found to be similar to the slopes of the soil-water characteristic curves. The equiv alent pore diameters calculated from the mercury entry value and the air entry value appear to be related. Therefore, it is suggested that porosimetry data can be used to construct an estimate of the soil-water characteristic curve."
This book reports research findings and outcome from various discipline of engineering and technology, focusing on industrial technology operation and sustainable development. The content is the results of research done at the Research and Innovation Section of the Universiti Kuala Lumpur - MITEC as well as several experts from other institutions in Malaysia. The content describes the latest knowledge and development aligned with current trends of industrial technology operation in Malaysia.
foundations of duct acoustics to the acoustic design of duct systems, through practical modeling, optimization and measurement techniques. Discover in-depth analyses of one- and three-dimensional models of sound generation, propagation and radiation, as techniques for assembling acoustic models of duct systems from simpler components are described. Identify the weaknesses of mathematical models in use and improve them by measurement when needed. Cope with challenges in acoustic design, and improve understanding of the underlying physics, by using the tools described. An essential reference for engineers and researchers who work on the acoustics of fluid machinery ductworks.
A daring, original approach to understanding and predicting the mechanical behavior of materials "Damage is an abstraction.... Strength is an observable, an independent variable that can be measured, with clear and familiar engineering definitions." (from the Preface to Damage Tolerance and Durability of Material Systems) Long-term behavior is one of the most challenging and important aspects of material engineering. There is a great need for a useful conceptual or operational framework for measuring long-term behavior. As much a revolution in philosophy as an engineering text, Damage Tolerance and Durability of Material Systems postulates a new mechanistic philosophy and methodology for predicting the remaining strength and life of engineering material. This philosophy associates the local physical changes in material states and stress states caused by time-variable applied environments with global properties and performance. There are three fundamental issues associated with the mechanical behavior of engineering materials and structures: their stiffness, strength, and life. Treating these issues from the standpoint of technical difficulty, time, and cost for characterization, and relationship to safety, reliability, liability, and economy, the authors explore such topics as:
With a robust selection of example applications and case studies, this book takes a step toward the fulfillment of a vision of a future in which the prediction of physical properties from first principles will make possible the creation and application of new materials and material systems at a remarkable cost savings.
This book contains technical papers, presented at the International Workshop on Connections and the Behaviour, Strength and Design of Steel Structures, on topics including local analysis of joints, modeling of load-deflection behaviour, methods of frame analysis, and design requirements and codes.
This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.
This book contains papers contributed to the IUTAM Symposium on Transformation Problems in Composite and Active Materials which was held in Cairo, Egypt in March 1997. The chapters address uncoupled and coupled transformation problems in composite and smart materials and their structures. The book is organized into six sections covering the following subjects: inelastic behaviour of composite materials, shape memory effects, functionally graded materials, transformation problems in composite structures, adaptive structures, and elasticity issues. Although the field of composite materials has seen substantial development in the past two decades, new composite systems are continually being developed for various applications. Among such systems are metal, intermetallic, and superalloy matrix composites, carbon-carbon composites, and polymer matrix composites. The field of smart materials, on the other hand, is relatively new, but has also seen important developments recently. These two seemingly different fields have often been addressed in separate books, journals, and technical meetings. The present book realizes and addresses the similarities of the uncoupled and coupled transformation fields involved in both composite and smart materials. Outstanding researchers from the different groups active in mechanics of composite and smart materials have contributed papers which explore the common aspects of these materials and new directions in micromechanics research in both areas. Researchers active in the areas of mechanics of composite and smart materials will find this book very useful in addressing recent developments in these areas.
This book addresses the hydrostatics and stability of ships and other floating marine structures - a fundamental aspect of naval architecture and offshore engineering for naval architects and marine engineers. It starts from the most basic concepts, assuming that the reader has no prior knowledge of the subject. By presenting the topic in a methodical and step-by-step manner, the book helps students to enhance their understanding, while also providing valuable guidelines for lecturers teaching related courses.
This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science. The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015.
This book provides recommendations for thermal and structural modelling of spacecraft structures for predicting thermoelastic responses. It touches upon the related aspects of the finite element and thermal lumped parameter method. A mix of theoretical and practical examples supports the modelling guidelines. Starting from the system needs of instruments of spacecraft, the reader is supported with the development of the practical requirements for the joint development of the thermal and structural models. It provides points of attention and suggestions to check the quality of the models.The temperature mapping problem, typical for spacecraft thermoelastic analysis, is addressed. The principles of various temperature mapping methods are presented. The prescribed average temperature method, co-developed by the authors, is discussed in detail together with its spin-off to provide high quality conductors for thermal models. The book concludes with the discussion of the application of uncertainty assessment methods. The thermoelastic analysis chain is computationally expensive. Therefore, the 2k+1 point estimate method of Rosenblueth is presented as an alternative for the Monte Carlo Simuation method, bringing stochastic uncertainty analysis in reach for large thermoelastic problems.
The mathematical theory of contact mechanics is a growing field in engineering and scientific computing. This book is intended as a unified and readily accessible source for mathematicians, applied mathematicians, mechanicians, engineers and scientists, as well as advanced students. The first part describes models of the processes involved like friction, heat generation and thermal effects, wear, adhesion and damage. The second part presents many mathematical models of practical interest and demonstrates the close interaction and cross-fertilization between contact mechanics and the theory of variational inequalities. The last part reviews further results, gives many references to current research and discusses open problems and future developments. The book can be read by mechanical engineers interested in applications. In addition, some theorems and their proofs are given as examples for the mathematical tools used in the models.
This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.
This book highlights a systematic introduction to the basic theory of elastic wave propagation in complex media. The theory of elastic waves is widely used in fields such as geophysical exploration, seismic survey, medical ultrasound imaging, nondestructive testing of materials and structures, phononic crystals, metamaterials and structure health monitoring. To help readers develop a systematic grasp of the basic theory, and thus its applications, the book elaborates on the theory of elastic wave propagation in isotropic solid media, covering phenomena in infinite media, interfaces, layered structure with finite thickness, Rayleigh wave and Love wave propagating along the surface of semi-infinite solid and covering layer, and the guided waves and leaky waves in flat plates and in cylindrical rods. The propagation patterns and features of guided waves in cylindrical shells and spherical shells are also introduced. The author wrote the book based on a decade of teaching experience of a graduate course of the same name and two decades of research on the theory and applications. The book is a valuable reference for students, researchers and professionals who expect an understandable and comprehensive discussion of the theory, analytical methods and related research results.
This book contains contributions from leading researchers in biomechanics, nanomechanics, tribology, contact mechanics, materials science and applications on various experimental techniques including atomic force microscopy (AFM) for studying soft, biomimetic and biological materials and objects. Biologists, physicists, researchers applying methods of contact mechanics and researchers testing materials using indentation techniques along with many other applied scientists will find this book a useful addition to their libraries. Moreover, several reviews in this book are written as introductions to several important and rather sophisticated research areas such as depth-sensing indentation, studying of biological cells by AFM probes, mechanics of adhesive contact and contact between viscoelastic (hereditary elastic) solids. The book containing new theoretical models, results of experimental studies and numerical simulations, along with reviews of above mentioned areas of contact mechanics in application to biological systems, would be beneficial for researchers in many areas of biology, medicine, engineering, mechanics and biomimetics.
This book was written with a dual purpose, as a reference book for practicing engineers and as a textbook for students of prestressed concrete. It represents the fifth generation of books on this subject written by its author. Significant additions and revisions have been made in this edition. Chapters 2 and 3 contain new material intended to assist the engineer in understanding factors affecting the time-dependent properties of the reinforcement and concrete used in prestressing concrete, as well as to facilitate the evaluation of their effects on prestress loss and deflection. Flexural strength, shear strength, and bond of prestressed concrete members were treated in a single chapter in the of flexural strength has third edition. Now, in the fourth edition, the treatment been expanded, with more emphasis on strain compatibility, and placed in Chapter 5 which is devoted to this subject alone. Chapter 6 of this edition, on flexural-shear strength, torsional strength, and bond of prestressed reinforce ment, was expanded to include discussions of Compression Field Theory and torsion that were not treated in the earlier editions. In similar fashion, expanded discussions of loss of prestress, deflection, and partial prestressing now are presented separately, in Chapter 7. Minor additions and revisions have been made to the material contained in the remaining chapters with the exception of xv xvi I PREFACE Chapter 17. This chapter, which is devoted to construction considerations, has important new material on constructibility and tolerances as related to prestressed concrete."
Elastomers are found in many applications ranging from technology to daily life applications for example in tires, drive systems, sealings and print rollers. Dynamical operation conditions put extremely high demands on the performance and stability of these materials and their elastic and flow properties can be easily adjusted by simple manipulations on their elastic and viscous properties. However, the required service life suffers often from material damage as a result of wear processes such as abrasion and wear fatigue, mostly caused by crack formation and propagation. This book covers interdisciplinary research between physics, physical chemistry, material sciences and engineering of elastomers within the range from nanometres to millimetres and connects these aspects with the constitutive material properties. The different chapters describe reliable lifetime and durability predictions based on new fracture mechanical testing concepts and advanced material-theoretical methods which are finally implemented in the finite element method for structural simulations. The use of this approach allows a realistic description of complex geometrical and loading conditions which includes the peculiarities of the mechanical behaviour of elastomeric materials in detail. Furthermore, this approach demonstrates how multi-scale research concepts provide an ambitious interdisciplinary challenge at the interface between engineering and natural sciences. This book covers the interests of academic researchers, graduate students and professionals working in polymer science, rubber and tire technology and in materials science at the interface of academic and industrial research.
This book covers different topics of nonlinear mechanics in complex structures, such as the appearance of new nonlinear phenomena and the behavior of finite-dimensional and distributed nonlinear systems, including numerous systems directly connected with important technological problems.
This book presents interdisciplinary, cutting-edge and creative applications of graph theory and modeling in science, technology, architecture and art. Topics are divided into three parts: the first one examines mechanical problems related to gears, planetary gears and engineering installations; the second one explores graph-based methods applied to medical analyses as well as biological and chemical modeling; and the third part includes various topics e.g. drama analysis, aiding of design activities and network visualisation. The authors represent several countries in Europe and America, and their contributions show how different, useful and fruitful the utilization of graphs in modelling of engineering systems can be. The book has been designed to serve readers interested in the subject of graph modelling and those with expertise in related areas, as well as members of the worldwide community of graph modelers.
This book provides a comprehensive yet concise presentation of the analysis methods of lightweight engineering in the context of the statics of beam structures and is divided into four sections. Starting from very general remarks on the fundamentals of elasticity theory, the first section also addresses plane problems as well as strength criteria of isotropic materials. The second section is devoted to the analytical treatment of the statics of beam structures, addressing beams under bending, shear and torsion. The third section deals with the work and energy methods in lightweight construction, spanning classical methods and modern computational methods such as the finite element method. Finally, the fourth section addresses more advanced beam models, discussing hybrid structures as well as laminated and sandwich beams, in addition to shear field beams and shear deformable beams. This book is intended for students at technical colleges and universities, as well as for engineers in practice and researchers in engineering. |
You may like...
Advances in Information Systems…
David Avison, George M. Kasper, …
Hardcover
R2,774
Discovery Miles 27 740
Blockchain Gaps - From Myth to Real Life
Shin'ichiro Matsuo, Nat Sakimura
Hardcover
R2,200
Discovery Miles 22 000
Tire Waste and Recycling
Trevor M. Letcher, Valerie Shulman, …
Paperback
R4,973
Discovery Miles 49 730
|