Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
Information-Statistical Data Mining: Warehouse Integration with
Examples of Oracle Basics is written to introduce basic concepts,
advanced research techniques, and practical solutions of data
warehousing and data mining for hosting large data sets and EDA.
This book is unique because it is one of the few in the forefront
that attempts to bridge statistics and information theory through a
concept of patterns.
This book contains the most relevant papers presented in the International Conference on Materials Forming, ESAFORM 2005. It gathers selected plenary and keynote papers presented in the conference, offering an up-to-date synthesis of the academic and industrial research in the fields of physical and numerical modeling of materials forming processes.
Size effects on material and structural behaviors are of great interest to physicists, material scientists, and engineers who need to understand and model the mechanical behavior of solids especially at micron- and nano-scales. This volume is a collection of twenty five written contributions by distinguished invited speakers from seven countries to the IUTAM Symposium on Size Effects on Material and Structural Behavior at Micron- and Nano-scales. It contains basic theoretical and experimental aspects of the recent advances in the mechanics research of various size effects. Main topics include: behaviors of materials and structures at micron- and nanometer-scales; physical bases of size effects; adaptive and multi-functional behaviors of materials at small scales; size effects in fracture and phase transformation of solids; multi-scale modeling and simulation; size effects in material instability and its propagation, etc.
This book has been written with two purposes, as a textbook for engineering courses and as a reference book for engineers and scientists. The book is an outcome of several lecture courses. These include lectures given to graduate students at the Asian Institute of Technology for several years, a course on elasticity for University of Tokyo graduate students in the spring of 1979, and courses on elasticity, viscoelasticity and ftnite deformation at the National University of Singapore from May to November 1985. In preparing this book, I kept three objectives in mind: ftrst, to provide sound fundamental knowledge of solid mechanics in the simplest language possible; second, to introduce effective analytical and numerical solution methods; and third, to impress on readers that the subject is beautiful, and is accessible to those with only a standard mathematical background. In order to meet those objectives, the ftrst chapter of the book is a review of mathematical foundations intended for anyone whose background is an elementary knowledge of differential calculus, scalars and vectors, and Newton's laws of motion. Cartesian tensors are introduced carefully. From then on, only Cartesian tensors in the indicial notation, with subscript as indices, are used to derive and represent all theories.
This revised third edition of Rheology of Fluid, Semisolid, and Solid Foods includes the following important additions: * A section on microstructure * Discussion of the quantitative characterization of nanometer-scale milk protein fibrils in terms of persistence and contour length. * A phase diagram of a colloidal glass of hard spheres and its relationship to milk protein dispersions * Microrheology, including detailed descriptions of single particle and multi-particle microrheological measurements * Diffusive Wave Spectroscopy * Correlation of Bostwick consistometer data with property-based dimensionless groups * A section on the effect of calcium on the morphology and functionality of whey protein nanometer-scale fibrils * Discussion of how tribology and rheology can be used for the sensory perception of foods
This monograph consists of two volumes and provides a unified, comprehensive presentation of the important topics pertaining to the understanding and determination of the mechanical behaviour of engineering materials under different regimes of loading. The large subject area is separated into eighteen chapters and four appendices, all self-contained, which give a complete picture and allow a thorough understanding of the current status and future direction of individual topics. Volume I contains eight chapters and three appendices, and concerns itself with the basic concepts pertaining to the entire monograph, together with the response behaviour of engineering materials under static and quasi-static loading. Thus, Volume I is dedicated to the introduction, the basic concepts and principles of the mechanical response of engineering materials, together with the relevant analysis of elastic, elastic-plastic, and viscoelastic behaviour. Volume II consists of ten chapters and one appendix, and concerns itself with the mechanical behaviour of various classes of materials under dynamic loading, together with the effects of local and microstructural phenomena on the response behaviour of the material. Volume II also contains selected topics concerning intelligent material systems, and pattern recognition and classification methodology for the characterization of material response states. The monograph contains a large number of illustrations, numerical examples and solved problems. The majority of chapters also contain a large number of review problems to challenge the reader. The monograph can be used as a textbook in science and engineering, for third and fourth undergraduate levels, as wellas for the graduate levels. It is also a definitive reference work for scientists and engineers involved in the production, processing and applications of engineering materials, as well as for other professionals who are involved in the engineering design process.
Power consumption is a key limitation in many high-speed and high-data-rate electronic systems today, ranging from mobile telecom to portable and desktop computing systems, especially when moving to nanometer technologies. Ultra Low-Power Electronics and Design offers to the reader the unique opportunity of accessing in an easy and integrated fashion a mix of tutorial material and advanced research results, contributed by leading scientists from academia and industry, covering the most hot and up-to-date issues in the field of the design of ultra low-power devices, systems and applications.
This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
This volume contains the Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics, held in Aalborg, Denmark, 2-4 June, 2015. The book contains papers on recent advances in the design of mechanisms and their robotic applications. It treats the following topics: mechanism design, mechanics of robots, parallel manipulators, actuators and their control, linkage and industrial manipulators, innovative mechanisms/robots and their applications, among others. The book can be used by researchers and engineers in the relevant areas of mechanisms, machines and robotics.
The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.
In order to select an optimal structure among possible similar
structures, one needs to compare the elastic behavior of the
structures. A new criterion that describes elastic behavior is the
rate of change of deformation. Using this criterion, the safe
dimensions of a structure that are required by the stress
distributed in a structure can be calculated. The new non-linear
theory of elasticity allows one to determine the actual individual
limit of elasticity/failure of a structure using a simple
non-destructive method of measurement of deformation on the model
of a structure while presently it can be done only with a
destructive test for each structure. For building and explaining
the theory, a new logical structure was introduced as the basis of
the theory. One of the important physical implications of this
logic is that it describes mathematically the universal domain of
the possible stable physical relations.
The intention of this book is to reveal and discuss some aspects of the metal fo- ing plasticity theory. The modern theory describes deformation of metallic bodies in cold and hot regimes under combined thermal and mechanical loadings. Th- mal and deformation fields appear in metal forming in various forms. A thermal field influences the material properties, modifies the extent of plastic zones, etc. and the deformation of metallic body induces changes in temperature distribution. The thermal effects in metal forming plasticity can be studied at two levels, - pending on whether uncoupled or coupled theories of thermo-plastic response have to be applied. A majority of metal forming processes can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the material constants and through the thermal dilatation. The description of thermo-plastic deformation in metal forming is c- ried out on the ground of thermodynamics.
279 4. 2. Basic formulation 280 4. 3. Variations on the theme 285 4. 4. C. S. Parameters 286 5. CONCLUSIONS 289 REFERENCES 290 CHAPTER 12 FINITE ELEMENT METHODS FOR FILLS AND EMBANKMENT DAMS D. J. NAYLOR 1. INTRODUCTION 291 2. NUMBER OF LAYERS - ACTUAL AND ANALYTICAL 292 3. DEFORMATION IN A RISING FILL 292 4. BASIC FINITE ELEMENT PROCEDURE 292 5. INTERPRETATION OF FINITE ELEMENT DIS PLACEMENTS - 1D CASE 294 6. NEW LAYER STIFFNESS REDUCTION 296 7. MODELLING COMPACTION 300 8. FINITE ELEMENT EFFECTIVE STRESS TECHNIQUES 302 8. 1. Undrained effective stress analysis 302 8. 2. Known pore pressure change analysis 305 9. FIRST FILLING AND OPERATION - GENERAL 306 10. LOADING DUE TO IMPOUNDING 308 10. 1. upstream membrane dam 308 10. 2. Internal membrane dam 308 10. 3. Zoned embankment dams 312 11. ANALYSIS OF FIRST FILLING AND OPERATION 312 11. 1. First filling 312 11. 2. Steady seepage condition 314 11. 3. Finite element considerations 314 12. COLLAPSE SETTLEMENT 314 xili 12. 1. Nobari and Duncan's method 317 12. 2. Generalisation of Nobari and Duncan's method 319 12. 3. One-dimensional example 320 323 13. APPLICATIONS 13. 1. carsington dam 323 13. 2. Beliche dam 325 13. 3. Monasavu dam 330 REFERENCES 335 APPENDIX: DERIVATION OF EQUIVALENT LAYER STIFFNESS 332 CHAPTER 13 CONCRETE FACE ROCKFILL DAMS NELSON L. DE S. PINTO 1. INTRODUCTION 341 2. CURRENT DESIGN PRACTICE 343 2. 1. Evolution 343 2. 2. Embankment 344 2. 2. 1."
Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author 's research group over the past forty years at the Chinese Academy of Sciences. The book is intended for research scientists and engineers working in the fields of physics and engineering, as well as graduate students and advanced undergraduates of the related fields. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China. Qing-Ming Tan is a former Professor at the Institute of Mechanics, the Chinese Academy of Sciences, China.
This book is devoted to the deformation and failure in metallic materials, summarizing the results of a research programme financed by the "Deutsche Forschungsgemeinschaft". It presents the recent engineering as well as mathematical key aspects of this field for a broad community. Its main focus is on the constitutive behaviour as well as the damage and fracture of metallic materials, covering their mathematical foundation, modelling and numerics, but also relevant experiments and their verification.
This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. This new, 3rd edition reflects a number of recent advances in materials science, such as the use of polyurea layers on metallic plates in order to improve their ballistics. In addition, more data and analyses are now available on dwell and interface defeat in ceramic tiles coated with polymers, and are presented here. Lastly, the new edition includes new results, numerical and empirical, concerning the DIF issue in brittle solids, as well as the "upturn" phenomenon in the stress-strain curves of ductile solids.The author also added a new analysis of concrete penetration experiments which accounts for the scaling issue in this field. This is a new,and important, addition which we are happy to announce. They also added some new insights into the interaction of EEP's and FSP projectiles with metallic plates. Throughout the book, the authors demonstrate the advantages of the simulation approach in terms of understanding the basic physics behind the phenomena investigated, making it a must-read for all professionals who need to understand terminal ballistics.
Sandwich structures represent a special form of a laminated composite material or structural elements, where a relatively thick, lightweight and compliant core material separates thin stiff and strong face sheets. The faces are usually made of laminated polymeric based composite materials, and typically, the core can be a honeycomb type material, a polymeric foam or balsa wood. The faces and the core are joined by adhesive bonding, which ensures the load transfer between the sandwich constituent parts. The result is a special laminate with very high bending stiffness and strength to weight ratios. Sandwich structures are being used successfully for a variety of applications such as spacecraft, aircraft, train and car structures, wind turbine blades, boat/ship superstructures, boat/ship hulls and many others. The overall objective of the 7th International Conference on Sandwich Structures (ICSS-7) is to provide a forum for the presentation and discussion of the latest research and technology on all aspects of sandwich structures and materials, spanning the entire spectrum of research to applications in all the fields listed above.
In this book, leading scientists share their vision on the Kolsky-Hopkinson bar technique, which is a well-established experimental technique widely used to characterize materials and structures under dynamic, impact and explosion loads. Indeed, the Kolsky-Hopkinson bar machine is not a simple experimental device. It is rather a philosophical approach to solve the problem of measuring impact events. The split Hopkinson pressure bar conventional device is mainly limited to test homogeneous ductile non-soft materials under uni-axial compression. Extending the use of this device to more versatile applications faces several challenges such as controlling the stress state within the specimen and mastering the measurement of forces and velocities at the specimen-bar interfaces and then the material properties. Thus, the topics discussed in this book mainly focused on the loading and processing parts.
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
"Blurb & Contents" This current and comprehensive treatment of the physics of small- amplitude waves in hot magnetized plasmas provides a thorough update of the author's classic Theory of Plasma Waves. New topics include quasi-linear theory, inhomogeneous plasmas, collisions, absolute and convective instability, and mode conversion. Valuable for graduates and advanced undergraduates and an indispensable reference work for researchers in plasmas, controlled fusion, and space science.
This new edition of an important book in the field of strain gauge technology comprehensively covers all important aspects of and current practice in resistance strain gauge selection, installation, protection, instrumentation and performance. |
You may like...
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,455
Discovery Miles 34 550
Mechanics of Laminated Composite…
Francesco Tornabene, Nicholas Fantuzzi
Hardcover
R2,342
Discovery Miles 23 420
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R4,930
Discovery Miles 49 300
Semi-inverse Method In Nonlinear…
Anatoly S Yudin, Dmitry V Shchitov
Hardcover
R2,249
Discovery Miles 22 490
Structural Analysis of Concrete-Filled…
Yufen Zhang, Degang Guo
Hardcover
R4,491
Discovery Miles 44 910
Nonlinear Mechanics of Complex…
Holm Altenbach, Marco Amabili, …
Hardcover
R5,892
Discovery Miles 58 920
6th International Conference on Adhesive…
Lucas F. M. da Silva, Robert D. Adams
Hardcover
R4,896
Discovery Miles 48 960
|