![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
The book focuses especially on the application of SHM technology to thin walled structural systems made from carbon fiber reinforced plastics. Here, guided elastic waves (Lamb-waves) show an excellent sensitivity to structural damages so that they are in the center of this book. It is divided into 4 sections dealing with analytical, numerical and experimental fundamentals, and subsequently with Lamb-wave propagation in fiber reinforced composites, SHM-systems and signal processing. The book is designed for engineering students as well as for researchers in the field of structural health monitoring and for users of this technology.
The book presents an updated state-of-the-art overview of the
general aspects and practical applications of the theories of thin
structures, through the interaction of several topics, ranging from
non-linear thin-films, shells, junctions, beams of different
materials and in different contexts (elasticity, plasticity, etc.).
Advanced problems like the optimal design and the modeling of thin
films made of brittle or phase-transforming materials will be
presented as well.
This monograph contains the results of my research in the area of asymmet- ric theory of elasticity, conducted from 1969 to 1986 under the direction of PROFESSOR WITOLD NOWACKI. I am indebted to PROFESSOR NOWACKI, thanks to whose invaluable and very kind research assistance I obtained the results which were the foundation of this monograph. Therefore, I would like to express my deepest gratitude to him and honour his memory. He will remain in my thoughts with due respect. During my research assistantship at the Institute of Mechanics at the Uni- versity of Warsaw in 1970-1973 I had the opportunity to participate in sem- inars and conferences, study critical reviews and carryon numerous discus- sions and conversations. All this resulted in many valuable remarks included in this monograph. In this connection, I would like to thank Professor J6zef Ignaczak and Professor Marek Sokolowski from the Institute of Fundamental Problems of Technology at the Polish Academy of Sciences, as well as Pro- fessor Zbigniew Olesiak and Professor Adam Piskorek from the Institute of Mechanics at the University of Warsaw.
"The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements" is the first and only one on the Virtual Fields Method, a recent technique to identify materials mechanical properties from full-field measurements. It contains an extensive theoretical description of the method as well as numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials etc.) and situations(static, vibration, high strain rate etc.). Finally, it contains a detailed training section with examples of progressive difficulty to lead the reader to program the VFM. This is accompanied with a set of commented Matlab programs as well as with a GUI Matlab based software for more general situations.
The standard textbooks on aerodynamics usually omit any discussion of un steady aerodynamics or, at most, consider it only in a single chapter, based on two justifications. The first is that unsteady aerodynamics should be regarded as a specialized subject required "only" in connection with understanding and an alyzing aeroelastic phenomena such as flutter and gust response, and therefore should be dealt with in related specialist books. The second reason appears to be reluctance to discuss aerodynamics with the inclusion of the time-dependent terms in the conservation equations and the boundary conditions for fear that added complications may discourage the reader. We take the opposite view in this book and argue that a full understanding of the physics of lift generation is possible only by considering the unsteady aerody namics of the starting vortex generation process. Furthermore, certain "steady" flows are inherently unsteady in the presence of flow separation, as for example the unsteady flow caused by the Karman vortex shedding downstream of a cylin der and "static" airfoil stall which is an inherently unsteady flow phenomenon. Therefore, it stands to reason that a unified treatment of aerodynamics that yields steady-state aerodynamics as a special case offers advantages. This rea soning is strengthened by the developments in computational fluid dynamics over the past forty years, which showed that accurate steady-state solutions can be obtained efficiently by solving the unsteady flow equations.
"Structural and Failure Mechanics of Sandwich Composites" by Leif A. Carlsson and George A. Kardomateas focuses on some important deformation and failure modes of sandwich panels such as global buckling, wrinkling and local instabilities, and face/core debonding. The book also provides the mechanics background necessary for understanding deformation and failure mechanisms in sandwich panels and the response of sandwich structural parts to a variety of loadings. Specifically, first-order and high-order sandwich panel theories, and three-dimensional elasticity solutions for the structural behavior outlined in some detail. Elasticity analysis can serve as a benchmark for judging the accuracy of simplified sandwich plate, shell and beam theories. Furthermore, the book reviews test methods developed for the characterization of the constituent face and core materials, and sandwich beams and plates. The characterization of face/core debonding is a major topic of this text, and analysis methods based on fracture mechanics are described and applied to several contemporary test specimens. Test methods and results documented in the literature are included and discussed. The book will benefit structural and materials engineers and researchers with the desire to learn more about structural behavior, failure mechanisms, fracture mechanics and damage tolerance of sandwich structures.
The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc. The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought - or even specially manufactured - to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.
Interest in nonlinear problems in mechanics has been revived and intensified by the capacity of digital computers. Consequently, a question offundamental importance is the development of solution procedures which can be applied to a large class of problems. Nonlinear problems with a parameter constitute one such class. An important aspect of these problems is, as a rule, a question of the variation of the solution when the parameter is varied. Hence, the method of continuing the solution with respect to a parameter is a natural and, to a certain degree, universal tool for analysis. This book includes details of practical problems and the results of applying this method to a certain class of nonlinear problems in the field of deformable solid mechanics. In the Introduction, two forms of the method are presented, namely continu ous continuation, based on the integration of a Cauchy problem with respect to a parameter using explicit schemes, and discrete continuation, implementing step wise processes with respect to a parameter with the iterative improvement of the solution at each step. Difficulties which arise in continuing the solution in the neighbourhood of singular points are discussed and the problem of choosing the continuation parameter is formulated."
Actuating materials hold a promise for fast-spreading applications in smart structures and active control systems, and have attracted extensive attention from scientists of both mechanics and materials sciences communities. High performance and stability of actuating materials and structures play a decisive role in their successive applications as sensors and actuators in structural control and robotics. The advances of actuating materials, however, recently encountered a severe reliability issue. For a better understanding toward this issue, scientific efforts are of paramount significance to gain a deep insight into the intricate deformation and failure behaviors of actuating materials. To examine the state of the art in this subject, the general assembly of IUTAM approved in August, 2002 at Cambridge University, UK, a proposal to hold an IUTAM symposium to summarize the relevant research findings. The main themes of the symposium are: (i) the constitutive relations of actuating materials that couple mechanical, electrical, thermal and magnetic properties, as well as incorporate phase transformation and domain switch; (ii) the physical mechanisms of deformation, damage, and fatigue crack growth of actuating materials; (iii) the development of failure-resilient approaches that base on the macro-, meso-, and micro-mechanics analyses; (iv) the investigation of microstructural evolution, stability of phase transformation, and size effects of ferroelectric ceramics, shape memory alloys, actuating polymers, and bio-actuating materials. The above problems represent an exciting challenge and form a research thrust of both materials science and solid mechanics. The IUTAM Symposium (GA.
Micro and nano-fluidics concerns fluid dynamics occurring in devices or flow configurations with minimum design length measured in micrometers or smaller. The behavior of fluids at these scales is quite different from that at the macroscopic level due to the presence of surface tension effects, wetting phenomena, Brownian diffusion and hydrodynamic interactions with immersed particles and microstructures. These effects cannot be generally represented in a classical homogeneous continuum framework. However, this triggers the development of new tools to investigate and simulate problems at the meso-scopic level. This book contains a collection of works presented at the IUTAM Symposium on Advances on Micro and Nano-fluidics held in Dresden in 2007. It covers several subjects of wide interest for micro and nano-fluidics applications focusing on both, analytical and numerical approaches. Topics covered in particular include multi-scale particle methods for numerical simulations, liquid-wall interactions and modeling approaches, modeling of immersed nano-scale structures, organized flow behavior at micro and nano-scales, and methods for control of micro- and nano-scale flows.
Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.
Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.
Our rationale for the second edition remains the same as for the first edition, which appeared over twenty years ago. This is to offer simplified, useful and easily understood methods for dealing with the creep of components operating under conditions met in practice. When the first edition was written, we could not claim that the methods which were introduced were well-tried. They were somewhat conjectural, although firmly based, but not sufficiently well devel oped. Since that time, the Reference Stress Methods (RSM) introduced in the book have received much scrutiny and development. The best recognition we could have of the original methods is the fact that they are now firmly embedded in codes of practice. Hopefully, we have now gone a long way towards achieving our original objectives. There are major additions to this second edition which should help to justify our claims. These include further clarification regarding Reference Stress Methods in Chapter 4. There are also new topics which depend on RSM in varying degrees: * Creep fracture is covered in Chapter 7, where methods for assessing creep crack initiation and crack growth are fully described. This chapter starts with a review of the basic concepts of fracture mechanics and follows with useful, approximate methods, compatible with the needs of design for creep and the availability of standard data. * Creep/fatigue interactions and environmental effects appear in Chapter 8.
Everyone involved with the mechanics of composite materials and structures must have come across the works of Dr. N.J. Pagano in their research. His research papers are among the most referenced of all existing literature in the field of mechanics of composite materials. This monograph makes available, in one volume, all Dr. Pagano's major technical papers. Most of the papers included in this volume have been published in the open literature, but there are a few exceptions -- a few key, unpublished reports have been included for continuity. The topics are: some basic studies of anisotropic behavior, exact solutions for elastic response, role of micromechanics, and some carbon--carbon spinoffs. The volume can be used as a reference book by researchers in academia, industry, and government laboratories, and it can be used as a reference text for a graduate course on the mechanics of composite materials.
Mathematics plays an important role in mechanics and other human endeavours. Validating examples in this first volume include, for instance: the connection between the golden ratio (the "divine proportion" used by Phidias and many other artists and enshrined in Leonardo's Vitruvian Man, shown on the front cover), and the Fibonacci spiral (observable in botany, e.g., in the placement of sunflower seeds); is the coast of Tuscany infinitely long?; the equal-time free fall of a feather and a lead ball in a vacuum; a simple diagnostic for changing your car's shocks; the Kepler laws of the planets; the dynamics of the Sun-Earth-Moon system; the tides' mechanism; the laws of friction and a wheel rolling down a partially icy slope; and many more. The style is colloquial. The emphasis is on intuition - lengthy but intuitive proofs are preferred to simple non-intuitive ones. The mathematical/mechanical sophistication gradually increases, making the volume widely accessible. Intuition is not at the expense of rigor. Except for grammar-school material, every statement that is later used is rigorously proven. Guidelines that facilitate the reading of the book are presented. The interplay between mathematics and mechanics is presented within a historical context, to show that often mechanics stimulated mathematical developments - Newton comes to mind. Sometimes mathematics was introduced independently of its mechanics applications, such as the absolute calculus for Einstein's general theory of relativity. Bio-sketches of all the scientists encountered are included and show that many of them dealt with both mathematics and mechanics.
This special issue of ZAMP is published to honor Paul M. Naghdi for his contributions to mechanics over the last forty years and more. It is offered in celebration of his long, productive career in continuum mechan ics; a career which has been marked by a passion for the intrinsic beauty of the subject, an uncompromising adherence to academic standards, and an untiring devotion to our profession. Originally, this issue was planned in celebration of Naghdi's 70th birthday, which occurred on 29 March 1994. But, as the papers were being prepared for the press, it became evident that the illness from which Professor Naghdi had been suffering during recent months was extremely serious. On 26 May 1994, a reception took place in the Department of Mechanical Engineering at Berkeley, at which Naghdi received The Berkeley Citation (which is given in lieu of an honorary degree) and where he was also presented with the Table of Contents of the present collection. Subse quently, he had the opportunity to read the papers in manuscript form. He was very touched that his colleagues had chosen to honor him with their fine contributions. The knowledge that he was held in such high esteem by his fellow scientists brought a special pleasure and consolation to him in his last weeks. On Saturday evening, 9 July 1994, Paul Naghdi succumbed to the lung cancer which he had so courageously endured.
Nonlinearity and stochastic structural dynamics is of common interest to engineers and applied scientists belonging to many disciplines. Recent research in this area has been concentrated on the response and stability of nonlinear mechanical and structural systems subjected to random escitation. Simultaneously the focus of research has also been directed towards understanding intrinsic nonlinear phenomena like bifurcation and chaos in deterministic systems. These problems demand a high degree of sophistication in the analytical and numerical approaches. At the same time they arise from considerations of nonlinear system response to turbulence, earthquacke, wind, wave and guidancy excitations. The topic thus attracts votaries of both analytical rigour and practical applications. This books gives important and latest developments in the field presenting in a coherent fashion the research findings of leading international groups working in the area of nonlinear random vibration and chaos.
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.
This reference tutorial contains modern experimental approaches to analysis of strain-stress distribution based on interference-optical methods of registration of strain or displacement fields, including coherent-optical techniques (holographic interferometry, speckle photography, electronic digital speckle interferometry techniques) and photoelastic methods as well as the shadow optical method of caustic. The book describes the theory, efficient scope of application in the every-day practice and the problems of further development of these techniques. Much attention is paid to new and promising advanced developments in the field of observation and computational methods for study of residual stress, determination of fracture mechanics parameters and material deformation characteristics. The content corresponds to the course of lectures delivered by the author at the N.E. Bauman Moscow State Technical University. It is intended for technical university students, research engineers and postgraduate students who are doing analysis of strain-stress state and strength of structural elements.
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only inplane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element analysis.
FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.
Modeling and analysing multibody systems require a comprehensive
understanding of the kinematics and dynamics of rigid bodies. In
this volume, the relevant fundamental principles are first reviewed
in detail and illustrated in conformity with the multibody
formalisms that follow. Whatever the kind of system (tree-like
structures, closed-loop mechanisms, systems containing flexible
beams or involving tire/ground contact, wheel/rail contact, etc),
these multibody formalisms have a common feature in the proposed
approach, viz, the symbolic generation of most of the ingredients
needed to set up the model.
Piezoresistor Design and Applications provides an overview of these MEMS devices and related physics. The text demonstrates how MEMS allows miniaturization and integration of sensing as well as efficient packaging and signal conditioning. This text for engineers working in MEMS design describes the piezoresistive phenomenon and optimization in several applications. Includes detailed discussion of such topics as; coupled models of mechanics, materials and electronic behavior in a variety of common geometric implementations including strain gages, beam bending, and membrane loading. The text concludes with an up-to-date discussion of the need for integrated MEMS design and opportunities to leverage new materials, processes and MEMS technology. Piezoresistor Design and Applications is an ideal book for
design engineers, process engineers and researchers.
This textbook concerns thermal properties of bulk matter and is aimed at advanced undergraduate or first-year graduate students in a range of programs in science or engineering. It provides an intermediate level presentation of statistical thermodynamics for students in the physical sciences (chemistry, nanosciences, physics) or related areas of applied science/engineering (chemical engineering, materials science, nanotechnology engineering), as they are areas in which statistical mechanical concepts play important roles. The book enables students to utilize microscopic concepts to achieve a better understanding of macroscopic phenomena and to be able to apply these concepts to the types of sub-macroscopic systems encountered in areas of nanoscience and nanotechnology.
Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: * Modelling water diffusion * Damage induced by water * Accelerated testing * Including durability in design * In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to take account of them. Ensuring long term durability is not only necessary for safety reasons, but will also determine the economic viability of future marine structures. |
![]() ![]() You may like...
Proceedings of 16th Asian Congress of…
L. Venkatakrishnan, Sekhar Majumdar, …
Hardcover
R4,463
Discovery Miles 44 630
Nonlinear Mechanics of Complex…
Holm Altenbach, Marco Amabili, …
Hardcover
R6,327
Discovery Miles 63 270
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R5,170
Discovery Miles 51 700
Advances in Computer Methods and…
Amit Prashant, Ajanta Sachan, …
Hardcover
R8,443
Discovery Miles 84 430
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R4,183
Discovery Miles 41 830
|