![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > General
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
This book provides in a single and unified volume a clear and
thorough presentation of the recent advances in continuum damage
mechanics for metals and metal matrix composites. Emphasis is
placed on the theoretical formulation of the different constitutive
models in this area, but sections are added to demonstrate the
applications of the theory. In addition, some sections contain new
material that has not appeared before in the literature.
In the last few decades, much research work was conducted to improve ship structure analysis and design. Most of the efforts were directed to improve the strength of hull girder and to use the method of finite element analysis more efficiently and effectively. Because of the high degree of complexity of ship structures the interaction between hull girder strength and local strength require special attention. The complex system of stresses could produce unacceptable deformations and high values of equivalent stresses. This book covers an area of ship structure analysis and design that has not been exhaustively covered by other books on ship structures in a simple form. It presents the basic concepts of the methods and procedures required to calculate torsion and shear stresses in ship structures. Moreover, it is enhanced with a set of some solved and unsolved problems, very useful for students of naval and marine engineering.
One of the main, ongoing challenges for any engineering enterprise is that systems are built of materials subject to environmental degradation. Whether working with an airframe, integrated circuit, bridge, prosthetic device, or implantable drug-delivery system, understanding the chemical stability of materials remains a key element in determining their useful life. Environmental Degradation of Advanced and Traditional Engineering Materials is a monumental work for the field, providing comprehensive coverage of the environmental impacts on the full breadth of materials used for engineering infrastructure, buildings, machines, and components. The book discusses fundamental degradation processes and presents examples of degradation under various environmental conditions. Each chapter presents the basic properties of the class of material, followed by detailed characteristics of degradation, guidelines on how to protect against corrosion, and a description of testing procedures. A complete, self-contained industrial reference guide, this valuable resource is designed for students and professionals interested in the development of deterioration-resistant technological systems constructed with metallurgical, polymeric, ceramic, and natural materials.
This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. This new, 3rd edition reflects a number of recent advances in materials science, such as the use of polyurea layers on metallic plates in order to improve their ballistics. In addition, more data and analyses are now available on dwell and interface defeat in ceramic tiles coated with polymers, and are presented here. Lastly, the new edition includes new results, numerical and empirical, concerning the DIF issue in brittle solids, as well as the "upturn" phenomenon in the stress-strain curves of ductile solids.The author also added a new analysis of concrete penetration experiments which accounts for the scaling issue in this field. This is a new,and important, addition which we are happy to announce. They also added some new insights into the interaction of EEP's and FSP projectiles with metallic plates. Throughout the book, the authors demonstrate the advantages of the simulation approach in terms of understanding the basic physics behind the phenomena investigated, making it a must-read for all professionals who need to understand terminal ballistics.
Recently, several applications, primarily driven (1) The foundations of Maxwell's equations, (2) Basic homogenization theory, (3) Coupled systems (electromagnetic, thermal, mechanical and chemical), (4) Numerical methods and (5) An introduction to select biological problems. The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials. "
This volume gathers the latest advances, innovations, and applications in the field of cementitious composites. It covers advanced fiber-reinforced concrete materials such as strain-hardening cement-based composites (SHCC), textile-reinforced concrete (TRC) and high-performance fiber-reinforced cement-based composites (HPFRCC). All these new materials exhibit pseudo-ductile behavior resulting from the formation of multiple, fine cracks when subject to tensile loading. The use of such types of fiber-reinforced concrete could revolutionize the planning, development, dimensioning, structural and architectural design, construction of new and strengthening and repair of existing buildings and structures in many areas of application. The contents reflect the outcomes of the activities of SHCC5 (International RILEM Workshop on Strain Hardening Cementitious Composites) in 2022.
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
The 8th International Symposium on fracture mechanics of ceramics was held in on the campus of the University of Houston, Houston, TX, USA, on February 25-28, 2003. With the natural maturing of the fields of structural ceramics, this symposium focused on nano-scale materials, composites, thin films and coatings as well as glass. The symposium also addressed new issues on fundamentals of fracture mechanics and contact mechanics, and a session on reliability and standardization.
The aim is to introduce recent advances in engineering plasticity and its applications. The scope covers a wide range of topics on metals, rock soil, rubber, ceramics, polymers, composites, etc., which are involved in engineering plasticity. The papers represent a diverse nature of engineering plasticity and its application, which include constitutive modeling, damage, fracture, fatigue and failure, crash dynamics, structural plasticity, multi-scale plasticity, crystal plasticity, etc.
This book discusses offshore platform integration technology, focusing on the floatover methodology and its applications. It also addresses topics related to safety and cost-effectiveness, as well as ensuring the success of a project through careful planning and established detailed operation procedure/working manuals, which are rarely found in the published literature. Unlike other publications in this area, the book not only includes details of technology development, but also presents real project cases in the discussion to make it more comprehensible. Each topic is illustrated with carefully created sketches to show the complex operation procedures.
The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.
The standard textbooks on aerodynamics usually omit any discussion of un steady aerodynamics or, at most, consider it only in a single chapter, based on two justifications. The first is that unsteady aerodynamics should be regarded as a specialized subject required "only" in connection with understanding and an alyzing aeroelastic phenomena such as flutter and gust response, and therefore should be dealt with in related specialist books. The second reason appears to be reluctance to discuss aerodynamics with the inclusion of the time-dependent terms in the conservation equations and the boundary conditions for fear that added complications may discourage the reader. We take the opposite view in this book and argue that a full understanding of the physics of lift generation is possible only by considering the unsteady aerody namics of the starting vortex generation process. Furthermore, certain "steady" flows are inherently unsteady in the presence of flow separation, as for example the unsteady flow caused by the Karman vortex shedding downstream of a cylin der and "static" airfoil stall which is an inherently unsteady flow phenomenon. Therefore, it stands to reason that a unified treatment of aerodynamics that yields steady-state aerodynamics as a special case offers advantages. This rea soning is strengthened by the developments in computational fluid dynamics over the past forty years, which showed that accurate steady-state solutions can be obtained efficiently by solving the unsteady flow equations.
This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.
This unique book is the Proceedings of the 8th International Symposium on the Characterisation of Porous Solids, known also as "COPS VIII". The conference is one of a series, held every three years, which covers developments in methods for the characterisation of porous materials, and applications of those methods. The scope of the conference: COPS VIII is concerned with fundamental and applied research on the characterisation of the structure of porous materials, and the relationship between structure and material performance. The scope includes experimental characterisation methods such as X-Ray diffraction, NMR, adsorption, mercury intrusion, and calorimetry; theoretical and simulation methods used to interpret experimental data, such as molecular simulation, classical and statistical mechanical theory, and pore network modelling; and applied research on the impact of measured material properties on performance in applications.
Explore a Unified Treatment of the Finite Element Method The finite element method has matured to the point that it can accurately and reliably be used, by a careful analyst, for an amazingly wide range of applications. With expanded coverage and an increase in fully solved examples, the second edition of Finite Element Analysis: Thermomechanics of Solids presents a unified treatment of the finite element method in theremomechanics, from the basics to advanced concepts. An Integrated Presentation of Critical Technology As in the first edition, the author presents and explicates topics in a way that demonstrates the highly unified structure of the finite element method. The presentation integrates continuum mechanics and relevant mathematics with persistent reliance on variational and incremental-variational foundations. The author exploits matrix-vector formalisms and Kronecker product algebra to provide transparent and consistent notation throughout the text. Nearly twice as long as the first edition, this second edition features: Greater integration and balance between introductory and advanced material Increased number of fully solved examples Selected developments in numerical methods, detailing accelerating computations in eigenstructure extraction, time integration, and stiffness matrix triangularization More extensive coverage of the arc length method for nonlinear problems Expanded and enhanced treatment of rotating bodies and buckling Provides Sophisticated Understanding of Capabilities and Limitations This new edition of a popular text includes significant illustrative examples and applications, modeling strategies, and explores a range
This reference tutorial contains modern experimental approaches to analysis of strain-stress distribution based on interference-optical methods of registration of strain or displacement fields, including coherent-optical techniques (holographic interferometry, speckle photography, electronic digital speckle interferometry techniques) and photoelastic methods as well as the shadow optical method of caustic. The book describes the theory, efficient scope of application in the every-day practice and the problems of further development of these techniques. Much attention is paid to new and promising advanced developments in the field of observation and computational methods for study of residual stress, determination of fracture mechanics parameters and material deformation characteristics. The content corresponds to the course of lectures delivered by the author at the N.E. Bauman Moscow State Technical University. It is intended for technical university students, research engineers and postgraduate students who are doing analysis of strain-stress state and strength of structural elements.
This volume contains 39 contributions presented at the IUTAM Symposium on Mechanics of Granular and Porous Materials. The Symposium reviewed the current understanding of the constitutive behaviour of porous and granular solids, based on experimental data, numerical simulations and micromechanical models. An interdisciplinary approach is adopted, involving the fields of solid mechanics, materials science, geomechanics, chemical engineering and mathematics. This book emphasizes the development and use of constitutive laws to model practical processes such as mixing, drainage and drying, compaction of metal and ceramic powders and soils, and instabilities associated with these processes. A common theme is the development of constitutive models from an understanding of the underlying physical mechanisms of deformation and fracture. The volume should be of interest to researchers and to engineers concerned with measuring and predicting the response of granular and porous solids for structural applications.
The ?eld of geosciences is full of scienti?c fascination and questions that are crucial for humanity. Our ?uid environment (the atmosphere, oceans, rivers, etc. ) is responsible for climate, hurricanes, ?oods and other phen- ena characterised by rapid changes. These have to be contrasted with the permanence of our solid underground made of soil, rock, ice and snow. H- ever, this permanence is only apparent as shown for example by earthquakes and landslides, but also by a number of other processes of deformation. Such processes are nowadays of high importance whenever we look to the future (think for example of disposal of radioactive waste or carbon dioxide) or to the past (prospectionof oil,gasand ore). But also shortrangeextrapolations are important if we look e. g. at the prediction and mitigation of landslides or the foundation of oil and gas production plants o?shore or on glaciers. Geosciences are pronouncedly multidisciplinary as they comprise perhaps the most widespread collection of disciplines, such as geology, geophysics, physics, geochemistry, geography, geotechnical and geoenvironmental en- neering, Unfor petroleum engineering, soil mechanics and rock mechanics- tunately, often these disciplines operate rather independent of each other andthe increasing quest for transdisciplinary exchange is inhibited by the di?erentlanguages and views prevailing in the various disciplines. It appears thus that mechanics could o?er a substantial link across d- ciplines, at least with respect to geotechnical engineering and geology.
This book marks the 60th birthday of Prof. Vladimir Erofeev - a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev's contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.
Rod and Bar Rolling highlights the underlying relationship between solid mechanics and materials science. It provides a detailed overview of the deformation of material at high temperatures, an assessment of rod and bar rolling processes, and an in-depth review of the basics of hot rolling, elasticity, plasticity, and recrystallization for a clear understanding of the solid mechanics in engineering applications. This reference presents illustrative discussions of methods utilized at modern rod and bar rolling facilities and current topics such as interstand tension, roll wear at elevated temperatures, water cooling of a workpiece during rolling, and the theoretical principles of rod and bar rolling. TOC:
This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.
This textbook concerns thermal properties of bulk matter and is aimed at advanced undergraduate or first-year graduate students in a range of programs in science or engineering. It provides an intermediate level presentation of statistical thermodynamics for students in the physical sciences (chemistry, nanosciences, physics) or related areas of applied science/engineering (chemical engineering, materials science, nanotechnology engineering), as they are areas in which statistical mechanical concepts play important roles. The book enables students to utilize microscopic concepts to achieve a better understanding of macroscopic phenomena and to be able to apply these concepts to the types of sub-macroscopic systems encountered in areas of nanoscience and nanotechnology.
This book offers an interdisciplinary theoretical approach based on non-equilibrium statistical thermodynamics and control theory for mathematically modeling shock-induced out-of-equilibrium processes in condensed matter. The book comprises two parts. The first half of the book establishes the theoretical approach, reviewing fundamentals of non-equilibrium statistical thermodynamics and control theory of adaptive systems. The latter half applies the presented approach to a problem on shock-induced plane wave propagation in condensed matter. The result successfully reproduces the observed feature of waveform propagation in experiments, which conventional continuous mechanics cannot access. Further, the consequent stress-strain relationships derived with relaxation and inertia effect in elastic-plastic transition determines material properties in transient regimes.
Written by leading experts in their respective fields,
Solidification and Casting provides a comprehensive review of
topics fundamental to metallurgy and materials science as well as
indicates recent trends. |
You may like...
Advances in Mechanics of Microstructured…
Francesco Dell'Isola, Victor A. Eremeyev, …
Hardcover
Vibration Fatigue by Spectral Methods…
Janko Slavic, Miha Boltezar, …
Paperback
R3,968
Discovery Miles 39 680
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R3,937
Discovery Miles 39 370
|